Enhanced Real-Time Onboard Orbit Determination of LEO Satellites Using GPS Navigation Solutions with Signal Transit Time Correction
Abstract
:1. Introduction
2. Real-Time Orbit Determination Algorithm
2.1. Reference Frame
2.2. Dynamic Model
2.3. Ionosphere-Error-Free Combination for L1 and L2 Measurements
2.4. GPS Signal Time Delay Corrections
2.5. Navigation Processor in a Dual-Frequency Spaceborne GPS Receiver
2.6. Measurement Model
2.7. State Transition Matrix
3. Extended Kalman Filter
4. Simulation Overview
5. Simulation Results
5.1. GPS Constellation, LEO and Measurements
5.2. GPS Navigation Solutions
5.3. Orbit Estimation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chiaradia, A.P.M.; Gill, E.; Montenbruck, O.; Kuga, H.K.; Prado, A. Algorithms for On-Board Orbit Determination Using GPS OBODE-GPS. In Proceedings of the DLR-GSOC TN 00-04. 2000. Available online: https://elib.dlr.de/11320/ (accessed on 20 April 2025).
- Yoon, J.C.; Lee, B.S.; Choi, K.H. Spacecraft orbit determination using GPS navigation solutions. Aerosp. Sci. Technol. 2000, 4, 215–221. [Google Scholar] [CrossRef]
- Gomes, V.M.; Kuga, H.K.; Chiaradia, A.P.M. Real time orbit determination using GPS navigation solution. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 274–278. [Google Scholar] [CrossRef]
- Yu, Z.; You, Z. Real-time onboard orbit determination using GPS navigation solutions. In Proceedings of the 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control, Beijing, China, 17–20 October 2011; pp. 949–952. [Google Scholar]
- Aghav, S.T.; Gangal, S.A. Simplified orbit determination algorithm for low earth orbit satellites using spaceborn GPS navigation sensor. Artif. Satell. 2014, 49, 81–99. [Google Scholar] [CrossRef]
- Hegarty, C.; Kaplan, E. Understanding GPS: Principles and Applications, 2nd ed.; Artech House: New York, NY, USA, 2005; pp. 379–454. [Google Scholar]
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; GNSS Technology and Applications; Artech House: New York, NY, USA, 2013; pp. 339–341. [Google Scholar]
- Misra, P.; Enge, P. Global Positioning System: Signals, Measurements, and Performance, 2nd ed.; Ganga-Jamuna Press: Nanded, India, 2006; pp. 115–128. [Google Scholar]
- Chiaradia, A.P.M.; Kuga, H.K.; de Almeida Prado, A.F.B. Onboard and real-time artificial satellite orbit determination using GPS. Math. Probl. Eng. 2013, 2013, 571–576. [Google Scholar] [CrossRef]
- Hu, W.; Farrell, J.A. Derivation of the Sagnac (Earth-rotation) correction and analysis of its accuracy for GNSS applications. J. Geod. 2024, 98, 102. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. Ionospheric correction for GPS tracking of LEO satellites. J. Navig. 2002, 55, 293–304. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems; SpringerWien: New York, NY, USA, 2008; pp. 113–126. [Google Scholar]
- Chiaradia, A.; Kuga, H.; Prado, A. Single frequency GPS measurements in real-time artificial satellite orbit determination. Acta Astronaut. 2003, 53, 123–133. [Google Scholar] [CrossRef]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 257–399. [Google Scholar]
- Gaylor, D.E.; Page, R.G.; Bradley, K.V. Testing of the java astrodynamics toolkit propagator. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, USA, 21–24 August 2006; pp. 2072–2082. [Google Scholar]
- Montenbruck, O.; Gill, E. Satellite Orbits: Models, Methods and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 159–192, 217–219, 241–242. [Google Scholar]
- Tapley, B.; Schutz, B.; Born, G.H. Statistical Orbit Determination; Elsevier Academic Press: San Diego, CA, USA, 2004; pp. 194–212, 230–233, 505–510. [Google Scholar]
- Marshall, J.A.; Luthcke, S.B. Erratum-modeling radiation forces acting on Topex/Poseidon for precision orbit determination. J. Spacecr. Rocket. 1994, 31, 535–536. [Google Scholar] [CrossRef]
- DiEsposti, R. Time-dependency and coordinate system issues in GPS measurement models. In Proceedings of the 13th International Technical Meeting of the Datellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 1925–1929. [Google Scholar]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications, 4th ed.; Microcosm Press: Portland, OR, USA, 2015; pp. 593–595. [Google Scholar]
Case | Radial (m) | In-Track (m) | Cross-Track (m) | Position (m) | Velocity (m/s) |
---|---|---|---|---|---|
Case 1 | 6.83 | 3.61 | 27.15 | 28.22 | 0.07 |
Case 2 | 6.68 | 2.89 | 2.72 | 7.77 | 0.07 |
Parameter | Initial Value |
---|---|
Position | |
Velocity | |
Receiver clock bias | 1 |
Receiver clock drift | |
Empirical acceleration |
Parameter | Value |
---|---|
Position | |
Velocity | |
Receiver clock bias | 0 |
Receiver clock drift | |
Empirial acceleration |
Case | Radial (m) | In-Track (m) | Cross-Track (m) | Position (m) | Velocity (m/s) |
---|---|---|---|---|---|
Case 1 | 4.17 | 2.95 | 21.46 | 22.06 | 0.02 |
Case 2 | 1.87 | 0.84 | 2.63 | 3.34 | 0.02 |
Method | Radial (m) | In-Track (m) | Cross-Track (m) | Position (m) | Velocity (m/s) |
---|---|---|---|---|---|
Navigation solution | 6.59 | 2.98 | 2.67 | 7.72 | 0.06 |
EKF | 1.87 | 0.84 | 2.63 | 3.34 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Hwang, S.S. Enhanced Real-Time Onboard Orbit Determination of LEO Satellites Using GPS Navigation Solutions with Signal Transit Time Correction. Aerospace 2025, 12, 508. https://doi.org/10.3390/aerospace12060508
Lee D, Hwang SS. Enhanced Real-Time Onboard Orbit Determination of LEO Satellites Using GPS Navigation Solutions with Signal Transit Time Correction. Aerospace. 2025; 12(6):508. https://doi.org/10.3390/aerospace12060508
Chicago/Turabian StyleLee, Daero, and Soon Sik Hwang. 2025. "Enhanced Real-Time Onboard Orbit Determination of LEO Satellites Using GPS Navigation Solutions with Signal Transit Time Correction" Aerospace 12, no. 6: 508. https://doi.org/10.3390/aerospace12060508
APA StyleLee, D., & Hwang, S. S. (2025). Enhanced Real-Time Onboard Orbit Determination of LEO Satellites Using GPS Navigation Solutions with Signal Transit Time Correction. Aerospace, 12(6), 508. https://doi.org/10.3390/aerospace12060508