Multi-Objective Optimization and Reliability Assessment of Multi-Layer Radiation Shielding for Deep Space Missions
Abstract
:1. Introduction
2. Radiation Shielding Design
2.1. Radiation Environment
2.2. Geometry and Materials
2.3. Boundary Conditions
2.4. Multi-Objective Optimization Model
3. Optimization and Analysis of Results
3.1. Shielding Design with Genetic Algorithm
3.2. Fitness Function for Multi-Layer Material Shielding Design
3.3. Evolutionary Optimization Strategy
3.4. Design of Multi-Layer Materials
4. Reliability Shield Design
4.1. Reliability Risk Modeling Analysis
4.2. Sensitivity Analysis
4.3. Case Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Term | Full Name | Term | Full Name |
---|---|---|---|
GCRs | galactic cosmic rays | CL | confidence level |
SPEs | solar particle events | Z | atomic number |
HZE | high-charge and high-energy particles | TID | total ionizing dose |
LET | linear energy transfer | GA | genetic algorithm |
CMEs | coronal mass ejections | PSO | Particle Swarm Optimization |
NIEL | non-ionizing energy loss | SA | Simulated Annealing |
CDF | cumulative distribution function | probability density function |
References
- Wilson, J.W.; Slaba, T.C.; Badavi, F.F.; Reddell, B.D.; Bahadori, A.A. 3dhzetrn: Shielded Icru Spherical Phantom. Life Sci. Space Res. 2015, 4, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Toto, E.; Lambertini, L.; Laurenzi, S.; Santonicola, M.G. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers 2024, 16, 382. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Luo, B.; Wang, Q.; Attarilar, S. Enhanced Multifaceted Properties of Nanoscale Metallic Multilayer Composites. Materials 2024, 17, 4004. [Google Scholar] [CrossRef]
- Norbury, J.W.; Schimmerling, W.; Slaba, T.C.; Azzam, E.I.; Badavi, F.F.; Baiocco, G.; Benton, E.; Bindi, V.; Blakely, E.A.; Blattnig, S.R. Galactic Cosmic Ray Simulation at the Nasa Space Radiation Laboratory. Life Sci. Space Res. 2016, 8, 38–51. [Google Scholar] [CrossRef]
- Cai, Y.; Hu, H.; Pan, Z.; Hu, G.; Zhang, T. A Method to Optimize the Shield Compact and Lightweight Combining the Structure with Components Together by Genetic Algorithm and Mcnp Code. Appl. Radiat. Isot. 2018, 139, 169–174. [Google Scholar] [CrossRef]
- Cordella, F.; Cappelli, M.; Ciotti, M.; Claps, G.; De Leo, V.; Mazzotta, C.; Pacella, D.; Tamburrino, A.; Panza, F. Genetic algorithm for multilayer shield optimization with a custom parallel computing architecture. Eur. Phys. J. Plus 2024, 139, 150. [Google Scholar] [CrossRef]
- Cha, J.-H.; Noh, J.-S.; Sathish Kumar, S.K.; Jin, D.; Lee, D.-Y.; Kim, C.-G. Origami multi-layer space shield for cylindrical space structure. Chin. J. Aeronaut. 2024, 37, 294–312. [Google Scholar] [CrossRef]
- Vira, A.D.; Mone, E.M.; Ryan, E.A.; Connolly, P.T.; Smith, K.; Roecker, K.E.; Orlando, T.M.; Jiang, Z.; First, P.N. Designing a boron nitride polyethylene composite for shielding neutrons. APL Mater. 2023, 11, 101104. [Google Scholar] [CrossRef]
- Willenshofer, P.D.; Tunes, M.A.; Vo, H.T.; Stemper, L.; Renk, O.; Greaves, G.; Uggowitzer, P.J.; Pogatscher, S. Radiation-resistant aluminum alloy for space missions in the extreme environment of the solar system. arXiv 2022, arXiv:2210.03397. [Google Scholar]
- Shahzad, K.; Kausar, A.; Manzoor, S.; Rakha, S.A.; Uzair, A.; Sajid, M.; Arif, A.; Khan, A.F.; Diallo, A.; Ahmad, I. Views on radiation shielding efficiency of polymeric composites/nanocomposites and multi-layered materials: Current state and advancements. Radiation 2022, 3, 1–20. [Google Scholar] [CrossRef]
- Osman, A.M.; Abdel-Monem, A.M.; Abdo, A.E.-S. Studying the Shielding Properties of Lead Glass Composites Using Neutrons and Gamma Rays. Ann. Nucl. Energy 2015, 78, 146–151. [Google Scholar] [CrossRef]
- Yoonkwan, K.; Park, S.; Seo, Y. Enhanced X-Ray Shielding Ability of Polymer–Nonleaded Metal Composites by Multilayer Structuring. Ind. Eng. Chem. Res. 2015, 54, 5968–5973. [Google Scholar]
- Kim, S.C.; Kim, S.H. Fabrication of a Gd2O3-Based Film to Shield from Space Radiation inside Aircraft and Its Effectiveness. Aerospace 2023, 10, 968. [Google Scholar] [CrossRef]
- Shukai, G.; Wan, B.; Zhong, J.; Fu, G.; Wang, X. A Reliability Assessment Methodology of System-in-Package Based Virtual Qualification. Microelectron. Reliab. 2023, 150, 115212. [Google Scholar]
- Seongeun, P.; Kim, H.; Kim, Y.; Kim, E.; Seo, Y. Multilayer-Structured Non-Leaded Metal/Polymer Composites for Enhanced X-Ray Shielding. MRS Adv. 2018, 3, 1789–1797. [Google Scholar]
- Daneshvar, H.; Milan, K.G.; Sadr, A.; Sedighy, S.H.; Malekie, S.; Mosayebi, A. Multilayer radiation shield for satellite electronic components protection. Sci. Rep. 2021, 11, 20657. [Google Scholar] [CrossRef]
- Chowdhury, R.P.; Stegeman, L.A.; Lund, M.L.; Fry, D.; Madzunkov, S.; Bahadori, A.A. Hybrid methods of radiation shielding against deep-space radiation. Life Sci. Space Res. 2023, 38, 67–78. [Google Scholar] [CrossRef]
- Fan, W.C.; Drumm, C.R.; Roeske, S.B.; Scrivner, G.J. Shielding Considerations for Satellite Microelectronics. IEEE Trans. Nucl. Sci. 1996, 43, 2790–2796. [Google Scholar] [CrossRef]
- Shavers, M.R.; Zapp, N.; Barber, R.E.; Wilson, J.W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.A. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv. Space Res. 2004, 34, 1333–1337. [Google Scholar] [CrossRef]
- Micheli, D.; Apollo, C.; Pastore, R.; Barbera, D.; Morles, R.B.; Marchetti, M.; Moglie, F. Optimization of multilayer shields made of composite nanostructured materials. IEEE Trans. Electromagn. Compatibility 2011, 54, 60–69. [Google Scholar] [CrossRef]
- Dommeti, V.S.; Cheruku, D.R. Multi-layer composites shielding for electromagnetic radiation protection. Int. J. Adv. Intell. Paradig. 2020, 17, 139–158. [Google Scholar] [CrossRef]
- Iyer, K.A.; Mehoke, D.S.; Batra, R.C. Interplanetary dust particle shielding capability of spacecraft multi-layer insulation. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Jooq, M.K.Q.; Moaiyeri, M.H.; AI-Shidaifat, A.; Song, H. Ultra-efficient and robust auto-nonvolatile schmitt trigger-based latch design using ferroelectric CNTFET technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.K.; Simonsen, L.C.; Nealy, J.E.; Troutman, P.A.; Wilson, J.W. Shield Optimization in Simple Geometry for the Gateway Concept. SAE Technical Paper. 2002. Available online: https://www.sae.org/publications/technical-papers/content/2002-01-2332/ (accessed on 27 February 2025).
- Autran, J.; Munteanu, D. Electronics Reliability Assessment of Future Power Fusion Machines: Neutron Interaction Analysis in Bulk Silicon. Microelectron. Reliab. 2021, 126, 114223. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; Alaghband, Y.; Drayson, O.G.G.; Piaget, F.; Leavitt, R.; Allen, B.D.; Doan, N.-L.; Rostomyan, T.; Stabilini, A.; Reggiani, D.; et al. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat. Res. 2024, 201, 93–103. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Golge, S.; Slaba, T.C. Badhwar-O’Neill 2014 Galactic Cosmic Ray Flux Model Description; NASA/TP–2015–218569; NASA: Washington, DC, USA, 2015.
- Nelson, G.A. Space radiation and human exposures, a primer. Radiat. Res. 2016, 185, 349–358. [Google Scholar] [CrossRef]
- Valentin, J. The 2007 Recommendations of the International Commission on Radiological Protection; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Gohel, A.; Makwana, R. Multi-layered shielding materials for high energy space radiation. Radiat. Phys. Chem. 2022, 197, 110131. [Google Scholar] [CrossRef]
- Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A. Probability model for worst case solar proton event fluences. IEEE Trans. Nucl. Sci. 1999, 46, 1481–1485. [Google Scholar] [CrossRef]
- Duzellier, S. Radiation effects on electronic devices in space. Aerosp. Sci. Technol. 2005, 9, 93–99. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Huo, Z.-X.; Wang, F.-F. Tid Evaluation Based on Variabilities of Space Radiation and Device Failure Dose in Typical Navigation Satellite Orbits. Microelectron. Reliab. 2022, 137, 114747. [Google Scholar] [CrossRef]
- Dobynde, M.; Harikumaran, J.; Guo, J.; Wheeler, P.; Galea, M.; Buticchi, G. Cosmic Radiation Reliability Analysis for Aircraft Power Electronics. IEEE Trans. Transp. Electrif. 2023, 10, 344–352. [Google Scholar] [CrossRef]
Material Name | Density (g/cm3) | Chemical Formula |
---|---|---|
Magnesium | 1.80 | Mg |
Aluminum | 2.70 | Al |
Titanium | 4.50 | Ti |
Tantalum | 16.60 | Ta |
Liquid Methane | 0.47 | CH4 |
Lithium Hydride | 0.82 | LiH |
Polyethylene | 1.00 | CH2 |
Boron Nitride | 2.10 | BN |
Zylon | 1.55 | PBO |
Epoxy | 1.30 | C21H25CIO5 |
Element | Z | Photosphere (%) | GCRs (%) | Impulsive SPEs (%) | CMEs (%) |
---|---|---|---|---|---|
H | 1 | 90.97 | 86.91 | 95.22 | 96.36 |
He | 2 | 8.90 | 11.74 | 4.38 | 3.50 |
C | 6 | 0.032 | 0.421 | 0.0041 | 0.029 |
O | 8 | 0.067 | 0.499 | 0.095 | 0.061 |
Ne | 10 | 0.011 | 0.062 | 0.038 | 0.009 |
Mg | 12 | 0.003 | 0.103 | 0.039 | 0.012 |
Si | 14 | 0.003 | 0.098 | 0.034 | 0.009 |
Ti | 22 | 0.000 | 0.002 | 0.000 | 0.000 |
Fe | 26 | 0.003 | 0.003 | 0.103 | 0.008 |
Other | Other | 0.012 | 0.167 | 0.054 | 0.013 |
Depth (g/cm2) | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 |
---|---|---|---|---|---|
10 | Al | Mg | Ti | Ta | Al |
20 | PE | Mg | Ti | CH4 | C21H25CIO5 |
30 | C21H25CIO5 | Mg | Ti | CH4 | C21H25CIO5 |
40 | CH4 | C21H25CIO5 | LiH | CH4 | LiH |
50 | BN | C21H25CIO5 | LiH | C21H25CIO5 | LiH |
60 | BN | CH4 | BN | C21H25CIO5 | LiH |
70 | BN | PBO | BN | PE | PBO |
80 | LiH | CFRP | C21H25CIO5 | PE | PBO |
90 | LiH | LiH | C21H25CIO5 | BN | BN |
100 | LiH | LiH | Al | BN | Al |
Material | Attenuation Coefficient (cm2/g) | Attenuation Factor | Residual Flux Ratio (%) | Notes |
---|---|---|---|---|
Al | 0.015 | 62.5 | Baseline material | |
PE | 0.028 | 45.2 | High hydrogen content | |
LiH | 0.033 | 39.8 | Excellent for proton/neutron shielding | |
PBO | 0.025 | 48.5 | Lightweight composite | |
BN | 0.022 | 51.7 | Good for neutron absorption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Fu, G.; Wan, B.; Wang, X.; Chen, Z. Multi-Objective Optimization and Reliability Assessment of Multi-Layer Radiation Shielding for Deep Space Missions. Aerospace 2025, 12, 337. https://doi.org/10.3390/aerospace12040337
Guan S, Fu G, Wan B, Wang X, Chen Z. Multi-Objective Optimization and Reliability Assessment of Multi-Layer Radiation Shielding for Deep Space Missions. Aerospace. 2025; 12(4):337. https://doi.org/10.3390/aerospace12040337
Chicago/Turabian StyleGuan, Shukai, Guicui Fu, Bo Wan, Xiangfen Wang, and Zhiqiang Chen. 2025. "Multi-Objective Optimization and Reliability Assessment of Multi-Layer Radiation Shielding for Deep Space Missions" Aerospace 12, no. 4: 337. https://doi.org/10.3390/aerospace12040337
APA StyleGuan, S., Fu, G., Wan, B., Wang, X., & Chen, Z. (2025). Multi-Objective Optimization and Reliability Assessment of Multi-Layer Radiation Shielding for Deep Space Missions. Aerospace, 12(4), 337. https://doi.org/10.3390/aerospace12040337