Optimizing Combustion Characteristics of Ammonium Perchlorate Composites with Nickel-Enhanced Carboxymethyl Cellulose
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mezroua, A.; Hamada, R.A.; Brahmine, K.S.; Abdelaziz, A.; Tarchoun, A.F.; Boukeciat, H.; Bekhouche, S.; Bessa, W.; Benhammada, A.; Trache, D. Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim. Acta 2022, 716, 179305. [Google Scholar] [CrossRef]
- Bekhouche, S.; Trache, D.; Abdelaziz, A.; Tarchoun, A.F.; Boukeciat, H. Effect of fluorine-containing thermite coated with potassium perchlorate on the thermal decomposition behavior and kinetics of ammonium perchlorate. Thermochim. Acta 2023, 720, 179413. [Google Scholar] [CrossRef]
- Chen, T.; Hu, Y.W.; Zhang, C.; Gao, Z.J. Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Def. Technol. 2021, 17, 1471–1485. [Google Scholar] [CrossRef]
- Ma, D.; Li, X.; Wang, X.; Luo, Y. Research development on graphitic carbon nitride and enhanced catalytic activity on ammonium perchlorate. RSC Adv. 2021, 11, 5729–5740. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Yang, X.; Liu, B.; Song, R.; Xiao, F.; Yang, Y.; Wang, D.; Dong, M.; Ren, J.; Xu, B.B.; et al. Ammonium perchlorate@graphene oxide/Cu-MOF composites for efficiently catalyzing the thermal decomposition of ammonium perchlorate. Adv. Compos. Hybrid Mater. 2023, 6, 67. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, B.; Li, X.; Hao, W.; Huang, T.; Lei, B.; Guo, Z.; Shen, J.; Peng, R. Study of H2AzTO-based energetic metal-organic frameworks for catalyzing the thermal decomposition of ammonium perchlorate. Chem. Eng. J. 2021, 404, 126287. [Google Scholar] [CrossRef]
- Deng, P.; Wang, H.; Yang, X.; Ren, H.; Jiao, Q. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. J. Alloys Compd. 2020, 827, 154257. [Google Scholar] [CrossRef]
- Lei, G.; Zhong, Y.; Xu, Y.; Yang, F.; Bai, J.; Li, Z.; Zhang, J.; Zhang, T. New energetic complexes as catalysts for ammonium perchlorate thermal decomposition. Chin. J. Chem. 2021, 39, 1193–1198. [Google Scholar] [CrossRef]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Mubarak, N.M.; Hallad, S.; Hugar, S.; Fayaz, H. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 2020, 10, 21960. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Y. Dispersion characterizations and adhesion properties of epoxy composites reinforced by carboxymethyl cellulose surface treated carbon nanotubes. Powder Technol. 2022, 404, 117505. [Google Scholar] [CrossRef]
- Li, X.; Cui, D.; Zhao, Y.; Qiu, R.; Cui, X.; Wang, K. Preparation of high-performance thermal insulation composite material from alkali-activated binders, foam, hollow glass microspheres, and aerogel. Constr. Build. Mater. 2022, 346, 128493. [Google Scholar] [CrossRef]
- Luna-Martínez, J.F.; Reyes-Melo, E.; González-González, V.; Guerrero-Salazar, C.; Torres-Castro, A.; Sepúlveda-Guzmán, S. Synthesis and characterization of a magnetic hybrid material consisting of iron oxide in a carboxymethyl cellulose matrix. J. Appl. Polym. Sci. 2013, 127, 2325–2331. [Google Scholar] [CrossRef]
- Gan, T.; Zhang, Y.; Su, Y.; Hu, H.; Huang, A.; Huang, Z.; Chen, D.; Yang, M.; Wu, J. Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 2017, 24, 5371–5387. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Albokheet, W.A.; Gouda, M. Carboxymethyl cellulose/metal (Fe, Cu, and Ni) nanocomposites as non-precious inhibitors of C-Steel corrosion in HCl solutions: Synthesis, Characterization, Electrochemical and Surface Morphology Studies. Cellulose 2020, 27, 8039–8057. [Google Scholar] [CrossRef]
- Kamel, S.; Khattab, T.A. Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. Cellulose 2021, 28, 4545–4574. [Google Scholar] [CrossRef]
- Pinto, E.; Aggrey, W.N.; Boakye, P.; Amenuvor, G.; Sokama-Neuyam, Y.A.; Fokuo, M.K.; Karimaie, H.; Sarkodie, K.; Adenutsi, C.D.; Erzuah, S.; et al. Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A Review. Sci. Afr. 2022, 15, e01078. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Shafiei, N.; Nezafat, Z.; Bidgoli, N.S.S.; Soleimani, F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin, and chitosan-based (nano) catalysts in sustainable and selective oxidation reactions: A review. Carbohydr. Polym. 2020, 241, 116353. [Google Scholar] [CrossRef]
- Harimech, Z.; Toshtay, K.; Atamanov, M.; Azat, S.; Amrousse, R. Thermal decomposition of ammonium dinitramide (ADN) as green energy source for space propulsion. Aerospace 2023, 10, 832. [Google Scholar] [CrossRef]
- Atamanov, M.; Yelemessova, Z.; Imangazy, A.; Kamunur, K.; Lesbayev, B.; Mansurov, Z.; Yan, Q.L. The catalytic effect of CuO-doped activated carbon on thermal decomposition and combustion of AN/Mg/NC composite. J. Phys. Chem. C 2019, 123, 22941–22948. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, R.; Nie, H.; Yan, Q.; Liu, J.; Sun, Y. Insight into the precise catalytic mechanism of CuO on the decomposition and combustion of core–shell Al@AP particles. Fuel 2023, 346, 128294. [Google Scholar] [CrossRef]
- Yadav, N.; Srivastava, P.K.; Varma, M. Recent advances in catalytic combustion of AP-based composite solid propellants. Def. Technol. 2021, 17, 1013–1031. [Google Scholar]
- Zhang, T.; Shi, H.; Zhang, Y.; Liu, Q.; Fei, W.; Wang, T. Hollow flower-like nickel particles as the promoter of ammonium perchlorate-based solid propellant. Appl. Surf. Sci. 2021, 552, 149506. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Zhong, Y.; Lei, G.; Li, Z.; Zhang, J.; Zhang, T. Transition metal complexes based on hypergolic anions for catalysis of ammonium perchlorate thermal decomposition. Energy Fuels 2020, 34, 14667–14675. [Google Scholar] [CrossRef]
- Liang, T.; Song, R.; Chen, C.; Alomar, T.S.; Xiao, F.; AlMasoud, N.; El-Bahy, Z.M.; Yang, Y.; Algadi, H.; Sun, L. Graphene oxide–supported Cu/Co nano-catalysts for thermal decomposition of ammonium perchlorate composites. Adv. Compos. Hybrid Mater. 2023, 6, 188. [Google Scholar]
- Zhang, J.; Jin, B.; Peng, R. Construction of cobalt–nickel bimetallic coordination polymers and their catalytic thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 2024, 647, 158970. [Google Scholar]
- Fang, H.; Xu, R.; Yang, L.; Mi, Z.; He, Q.; Shi, H.; Jiang, L.; Fu, X.; Zhang, G. Facile fabrication of carbon nanotubes-encapsulated cobalt (nickel) salt nanocomposites and their highly efficient catalysis in the thermal degradation of ammonium perchlorate and hexogen. J. Alloys Compd. 2022, 928, 167134. [Google Scholar]
- Hu, Y.; Wang, X.; Hao, J.; Jiang, S.; Zhang, J.; Yang, Y.; Lin, K.; Zheng, J.; Shuai, Y. The catalytic thermal decomposition of ammonium perchlorate on CuMxOy (M = Fe, Ni, Co, and Zn) catalysts and their applications in solid propellant. J. Therm. Anal. Calorim. 2023, 148, 6013–6026. [Google Scholar]
- Chen, J.; Huang, B.; Liu, Y.; Qiao, Z.; Li, X.; Lv, G.; Yang, G. 3D hierarchically ordered porous carbon entrapped ni nanoparticles as a highly active catalyst for the thermal decomposition of ammonium perchlorate. Energ. Mater. Front. 2021, 2, 14–21. [Google Scholar]
- Chandrababu, P.; Beena, S.; Thomas, D.; Thankarajan, J.; Sukumaran Nair, V.; Raghavan, R. TG-MS study on the activity of Fe, Co, Ni, Cu, and Zn nanometal catalysts on thermal decomposition of ammonium perchlorate. J. Therm. Anal. Calorim. 2023, 148, 10065–10079. [Google Scholar]
- Liu, Y.H.; Zheng, J.; Yu, G.B.; Qia, J.; Xu, Q.Q.; Zhang, C.M.; Zhang, X. Graphene-based composites for the thermal decomposition of energetic materials. Mater. Sci. Forum 2021, 1027, 123–129. [Google Scholar]
- Shmakov, A.G.; Paletsky, A.A.; Netskina, O.V.; Dmitruk, K.A.; Komova, O.V.; Mukha, S.A. Kinetics and composition of gaseous products of pyrolysis of organometallic complexes of nickel, iron, and copper with inorganic anions. Combust. Explos. Shock Waves 2024, 60, 25–41. [Google Scholar] [CrossRef]
- Akhinzhanova, A.; Sultahan, S.; Tauanov, Z.; Mansurov, Z.; Capobianchi, A.; Amrousse, R.; Atamanov, M.; Yan, Q.-L. Preparation and evaluation of effective thermal decomposition of tetraamminecopper (ii) nitrate carried by graphene oxide. Combust. Flame 2023, 250, 112672. [Google Scholar] [CrossRef]
- Barakat, A.; Kamoun, E.A.; El-Moslamy, S.H.; Ghazy, M.B.; Fahmy, A. Photo-curable carboxymethylcellulose composite hydrogel as a promising biomaterial for biomedical applications. Int. J. Biol. Macromol. 2022, 207, 1011–1021. [Google Scholar] [CrossRef]
- Meiirbekov, M.N.; Ismailov, M.B.; Kenzhegulov, A.K.; Mustafa, L.M.; Tashmukhanbetova, I.B. Study of the effect of combined reinforcement and modification of epoxy resin with rubbers on the impact strength of carbon fiber-reinforced plastic. Eurasian J. Phys. Funct. Mater. 2024, 8, 23–32. [Google Scholar] [CrossRef]
- Tangthuam, P.; Pimoei, J.; Mohamad, A.A.; Mahlendorf, F.; Somwangthanaroj, A.; Kheawhom, S. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc-iodine batteries. Heliyon 2020, 6, e01078. [Google Scholar] [CrossRef] [PubMed]
- Olanipekun, E.O.; Ayodele, O.; Olatunde, O.C.; Olusegun, S.J. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int. J. Biol. Macromol. 2021, 183, 1971–1977. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan-metal complexes as antimicrobial agents: Synthesis, characterization, and structure-activity study. Polym. Bull. 2005, 55, 105–113. [Google Scholar] [CrossRef]
- Mohammadkhani, A.; Mohammadkhani, F.; Farhadyar, N.; Sadjadi, M.S. Novel nanocomposite zinc phosphate/polyvinyl alcohol/carboxymethyl cellulose: Synthesis, characterization, and investigation of antibacterial and anticorrosive properties. Case Stud. Chem. Environ. Eng. 2024, 9, 100591. [Google Scholar] [CrossRef]
- Taurbekov, A.; Kaidar, B.; Baltabay, A.; Imash, A.; Ko, W.-B.; Ko, J.-W.; Atamanov, M.; Mansurov, Z.; Smagulova, G. Valorization of Grass Clipping Waste: A Sustainable Approach to Cellulose Extraction and Paper Manufacturing. Appl. Sci. 2024, 14, 6680. [Google Scholar] [CrossRef]
- Yao, W.; Weng, Y.; Catchmark, J.M. Improved Cellulose X-Ray Diffraction Analysis Using Fourier Series Modeling. Cellulose 2020, 27, 5563–5579. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhang, L.; Zhang, R.; Liu, G.; Cheng, G. Understanding Changes in Cellulose Crystalline Structure of Lignocellulosic Biomass during Ionic Liquid Pretreatment by XRD. Bioresour. Technol. 2014, 151, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, C.; Mu, X.; Li, M.; Ren, Y.; Li, J.; Zhao, F.; Ma, H. Decomposition Reaction Mechanism of Ammonium Perchlorate on N-Doped Graphene Surfaces: A Density Functional Theory Study. Molecules 2025, 30, 837. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Xie, Q.; Su, J.; Hu, M.; Yao, Z. Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites. Fire 2023, 6, 106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurguzhin, M.; Janikeyev, M.; Omarbayev, M.; Yermakhanova, A.; Meiirbekov, M.; Zhumakhanov, M.; Lesbayev, A.; Yerezhep, D.; Atamanov, M.; Tulepov, M.; et al. Optimizing Combustion Characteristics of Ammonium Perchlorate Composites with Nickel-Enhanced Carboxymethyl Cellulose. Aerospace 2025, 12, 270. https://doi.org/10.3390/aerospace12040270
Nurguzhin M, Janikeyev M, Omarbayev M, Yermakhanova A, Meiirbekov M, Zhumakhanov M, Lesbayev A, Yerezhep D, Atamanov M, Tulepov M, et al. Optimizing Combustion Characteristics of Ammonium Perchlorate Composites with Nickel-Enhanced Carboxymethyl Cellulose. Aerospace. 2025; 12(4):270. https://doi.org/10.3390/aerospace12040270
Chicago/Turabian StyleNurguzhin, Marat, Marat Janikeyev, Myrzakhan Omarbayev, Azira Yermakhanova, Mohammed Meiirbekov, Miras Zhumakhanov, Aidos Lesbayev, Darkhan Yerezhep, Meiram Atamanov, Marat Tulepov, and et al. 2025. "Optimizing Combustion Characteristics of Ammonium Perchlorate Composites with Nickel-Enhanced Carboxymethyl Cellulose" Aerospace 12, no. 4: 270. https://doi.org/10.3390/aerospace12040270
APA StyleNurguzhin, M., Janikeyev, M., Omarbayev, M., Yermakhanova, A., Meiirbekov, M., Zhumakhanov, M., Lesbayev, A., Yerezhep, D., Atamanov, M., Tulepov, M., & Beksultan, Z. (2025). Optimizing Combustion Characteristics of Ammonium Perchlorate Composites with Nickel-Enhanced Carboxymethyl Cellulose. Aerospace, 12(4), 270. https://doi.org/10.3390/aerospace12040270