Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems
Abstract
1. Introduction
- A novel method is proposed to approximate the probability distribution of observed measurements using available data such as predictions, observations, and the innovation term, enhanced by sampling techniques.
- A new approach is introduced to compute a reformed measurement from the approximated distribution, enabling robust state estimation in the presence of non-Gaussian errors, particularly biased measurements.
- The proposed reformed measurement can be modularly integrated into existing KF-based GNSS/INS systems with minimal changes to the existing KF implementation.
2. Related Works
3. Reformed Measurement via Probabilistic Distribution Simulation
3.1. Proposed Estimation Architecture
3.2. Sampling-Based Measurement Distribution Estimation
3.3. Adjuting the Number of Samples for Reformed Measurement Calculations
Algorithm 1: Making the Reformed measurement | ||||
Input: Predicted state Observed measurement ; Observation matrix ; Dimension ; Measurement covariance matrix ; Samples ; Initial time ; Previous simulated distribution ; Predicted covariance ; | ||||
Output: Reformed measurement ; Reformed covariance ; Simulated distribution ; | ||||
1: | Initialization; k = 1 | |||
2: | ||||
3: | ||||
4: | ; ; | |||
5: | ; ; | |||
6: | ~ | |||
7: | ||||
8: | ||||
9: | ||||
10: | ||||
11: | ||||
12: | ||||
13: | ; | |||
14: | ; | |||
15: | ; | |||
16: | ; | |||
17: | ; | |||
18: | ; | |||
19: | ||||
20: | ||||
21: | ||||
22: | ||||
23: | ||||
24: | ||||
25: |
4. Simulation and Analysis
4.1. Experimental Setup and Validation
4.2. Analysis of the Reformed Measurement Quality
4.3. Analysis of the Navigation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durrant-Whyte, H. Introduction to estimation and the Kalman filter. Aust. Cent. Field Robot. 2001, 28, 65–94. [Google Scholar]
- Potokar, E.R.; Norman, K.; Mangelson, J.G. Invariant extended kalman filtering for underwater navigation. IEEE Robot. Autom. Lett. 2021, 6, 5792–5799. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, C.; Lee, W.; Huang, G. Decoupled right invariant error states for consistent visual-inertial navigation. IEEE Robot. Autom. Lett. 2022, 7, 1627–1634. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, X.; Nitsch, M.; Abel, D. Continuous-time factor graph optimization for trajectory smoothness of GNSS/INS navigation in temporarily GNSS-denied environments. IEEE Robot. Autom. Lett. 2022, 7, 9115–9122. [Google Scholar] [CrossRef]
- Laoudias, C.; Moreira, A.; Kim, S.; Lee, S.; Wirola, L.; Fischione, C. A survey of enabling technologies for network localization, tracking, and navigation. IEEE Commun. Surv. Tutor. 2018, 20, 3607–3644. [Google Scholar] [CrossRef]
- Mao, X.; He, J.; Wang, G.; Peng, B.; Zhang, K.; Gao, S.; Chen, J. A Model Fusion Distributed Kalman Filter for Non-Gaussian Measurement Noise. IEEE Internet Things J. 2025, 12, 14677–14690. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Process. Lett. 2016, 23, 468–472. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, D.; Lee, B.; Sung, S. Robust MPS-INS UKF Integration and SIR-Based Hyperparameter Estimation in a 3D Flight Environment. Aerospace 2025, 12, 228. [Google Scholar]
- Arroyo Cebeira, A.; Asensio Vicente, M. Adaptive IMM-UKF for airborne tracking. Aerospace 2023, 10, 698. [Google Scholar] [CrossRef]
- Konatowski, S.; Kaniewski, P.; Matuszewski, J. Comparison of estimation accuracy of EKF, UKF and PF filters. Annu. Navig. 2016, 69–87. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 395–407. [Google Scholar]
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics Cambridge; MIT Press: Cambridge, MA, USA, 2005; pp. 65–67. [Google Scholar]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood, MA, USA, 2003; pp. 35–62. [Google Scholar]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Shi, P.; Chambers, J.A. A novel outlier-robust Kalman filtering framework based on statistical similarity measure. IEEE Trans. Autom. Control 2020, 66, 2677–2692. [Google Scholar] [CrossRef]
- Choi, M.J.; Kim, Y.H.; Kim, E.J.; Song, J.W. Enhancement of heading accuracy for GPS/INS by employing average velocity in low dynamic situations. IEEE Access 2020, 8, 43826–43837. [Google Scholar] [CrossRef]
- Hu, C.; Chen, W.; Chen, Y.; Liu, D. Adaptive Kalman filtering for vehicle navigation. Positioning 2009. [Google Scholar] [CrossRef]
- Mohamed, A.; Schwarz, K. Adaptive Kalman filtering for INS/GPS. J. Geod. 1999, 73, 193–203. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, J.G.; Park, C.G. Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 125–137. [Google Scholar]
- Biswal, A.; Jwo, D.-J. Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation. Appl. Sci. 2024, 14, 7657. [Google Scholar] [CrossRef]
- Li, J.; Yuan, G.; Duan, H. Adaptive Kalman filter for SINS/GPS integration system with measurement noise uncertainty. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 15–17 October 2021; pp. 163–168. [Google Scholar]
- Wang, X.; Li, K.; Gao, P.; Wang, W. Reinforced Ultra-Tightly Coupled GPS/INS System for Challenging Environment. Math. Probl. Eng. 2014, 2014, 609154. [Google Scholar] [CrossRef]
- Ye, X.; Wang, J.; Wu, D.; Zhang, Y.; Li, B. A Novel Adaptive Robust Cubature Kalman Filter for Maneuvering Target Tracking with Model Uncertainty and Abnormal Measurement Noises. Sensors 2023, 23, 6966. [Google Scholar] [CrossRef]
- Terrell, G.R.; Scott, D.W. Variable kernel density estimation. Ann. Stat. 1992, 1236–1265. [Google Scholar] [CrossRef]
- Kim, Y.H. Advanced Probabilistic Estimation Techniques with Consideration of Stochastic Measurement Variability. Ph.D. Dissertation, Sejong University, Seoul, Republic of Korea, 2024. [Google Scholar]
- Walsh, M.J. A Normal Variance Mixture Model for Robust Kalman Filtering. arXiv 2025, arXiv:2502.18206. [Google Scholar] [CrossRef]
- UAV Toolbox, Version: 1.3, Volume R2022a; The MathWorks, Inc.: Natick, MA, USA, 2022. Available online: https://www.mathworks.com/help/uav/index.html?s_tid=CRUX_lftnav (accessed on 22 September 2025).
- Medina, D.; Li, H.; Vilà-Valls, J.; Closas, P. Robust statistics for GNSS positioning under harsh conditions: A useful tool? Sensors 2019, 19, 5402. [Google Scholar] [CrossRef]
- Mao, X.; Wang, W.; Gao, Y. Precise orbit determination for low Earth orbit satellites using GNSS: Observations, models, and methods. Astrodynamics 2024, 8, 349–374. [Google Scholar] [CrossRef]
- Guo, B.; Tao, Z.; Gao, J. Variational robust filter with a heavy-tailed mixture model for GNSS/INS tightly coupled integration. Meas. Sci. Technol. 2024, 36, 015130. [Google Scholar] [CrossRef]
- Peretic, M.; Gilabert, R.; Carroll, J.; Gutierrez, J.; Moore, A.; Christie, J.; Dill, E.T. Statistical Analysis of GNSS Multipath Errors in Urban Canyons. In Proceedings of the 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS), Salt Lake City, UT, USA, 28 April–1 May 2025; pp. 1216–1225. [Google Scholar]
- Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology; IET: London, United Kingdom, 2004; Volume 17, pp. 360–363, 409–412. [Google Scholar]
- Jing, H.; Gao, Y.; Shahbeigi, S.; Dianati, M. Integrity monitoring of GNSS/INS based positioning systems for autonomous vehicles: State-of-the-art and open challenges. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14166–14187. [Google Scholar] [CrossRef]
- Huber, P.J. Robust statistics. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1248–1251. [Google Scholar]
- Zhang, C.; Zhang, T.; Yin, F.; Zoubir, A.M. Data-adaptive M-estimators for robust regression via bi-level optimization. Signal Process. 2023, 210, 109063. [Google Scholar] [CrossRef]
Inertial Measurement Units (IMU) [100 Hz] | ||
---|---|---|
Repeatability | Noise | |
Accelerometer | ||
Gyroscope | ||
Global Navigation Satellite System (GNSS) [1 Hz] | ||
Position error | ||
Horizontal | ) | |
Vertical | ) |
Area Method | Total RMSE | Section 1 RMS/Peak | Section 2 RMS/Peak |
---|---|---|---|
Normal KF | 7.4516 | 2.3042/10.4461 | 3.9481/22.5950 |
ADKF (5) | 5.4499 | 0.5030/3.6556 | 1.1025/13.0698 |
ADKF (10) | 5.3501 | 0.6438/4.2298 | 1.2980/7.6426 |
ADKF (20) | 6.0195 | 0.9180/5.3690 | 1.8594/10.0596 |
GMM-KF | 7.3581 | 0.8470/10.4531 | 1.4270/23.2291 |
Huber-KF | 5.6856 | 0.5258/3.1335 | 0.8309/9.0361 |
Proposed | 4.7629 | 0.3391/2.0432 | 0.5634/4.5882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.H.; Lee, J.H.; Seo, K.W.; Lee, M.H.; Song, J.W. Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems. Aerospace 2025, 12, 863. https://doi.org/10.3390/aerospace12100863
Kim YH, Lee JH, Seo KW, Lee MH, Song JW. Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems. Aerospace. 2025; 12(10):863. https://doi.org/10.3390/aerospace12100863
Chicago/Turabian StyleKim, Yong Hun, Joo Han Lee, Kyeong Wook Seo, Min Ho Lee, and Jin Woo Song. 2025. "Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems" Aerospace 12, no. 10: 863. https://doi.org/10.3390/aerospace12100863
APA StyleKim, Y. H., Lee, J. H., Seo, K. W., Lee, M. H., & Song, J. W. (2025). Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems. Aerospace, 12(10), 863. https://doi.org/10.3390/aerospace12100863