Consensus SE(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation
Abstract
:1. Introduction
2. Spacecraft Dynamics on
2.1. Pose Kinematics
2.2. Satellite Dynamics
2.3. Communication Graph
3. Problem Statement for Proximity Operations
- (i)
- Four chief satellites and one deputy satellite is in formation, as shown in Figure 3.
- (ii)
- Chief satellite orbital elements and its attitude are known perfectly at all times.
- (iii)
- The objective is to estimate the deputy satellite— information—using the filters that are running in each chief satellite.
- (iv)
- The deputy satellite has attitude sensors for estimating C in Equation (1). This information along with its velocities is shared with each chief satellite for running the filter.
- (v)
- Chief satellites have a LIDAR sensor, which measures its range from the deputy satellite. This is used to estimate the p in the g-matrix.
- (vi)
- For consensus estimation, each chief satellite state is shared in the communication network.
Measurement Model
4. Consensus Continuous-Discrete -Constrained Extended Kalman Filter
4.1. Continuous-Discrete Time SE(3)-EKF Structure
4.2. Continuous-Discrete Time SE(3)-EKF Error Dynamics
4.3. Discrete Time SE(3)-EKF Gain Selection
5. Discretized Variational Integration
6. Numerical Simulation
Effects of Additional Communication Links
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schilling, K. I-3D: Formations of small satellites. In Nanosatellites: Space and Ground Technologies, Operations and Economics; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 327–339. [Google Scholar]
- Kaiser, M.; Gans, N.; Dixon, W. Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1064–1077. [Google Scholar] [CrossRef]
- Liu, C.; Hu, W. Relative pose estimation for cylinder-shaped spacecrafts using single image. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3036–3056. [Google Scholar] [CrossRef]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. Pose estimation for spacecraft relative navigation using model-based algorithms. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 431–447. [Google Scholar] [CrossRef]
- Kim, S.G.; Crassidis, J.L.; Cheng, Y.; Fosbury, A.M.; Junkins, J.L. Kalman filtering for relative spacecraft attitude and position estimation. J. Guid. Control Dyn. 2007, 30, 133–143. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y.; Idan, M. Recursive attitude determination from vector observations Euler angle estimation. J. Guid. Control Dyn. 1987, 10, 152–157. [Google Scholar] [CrossRef]
- Gui, H.; De Ruiter, A.H. Quaternion invariant extended Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 2018, 41, 863–878. [Google Scholar] [CrossRef]
- Hemingway, E.G.; O’Reilly, O.M. Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces and applied moments. Multibody Syst. Dyn. 2018, 44, 31–56. [Google Scholar] [CrossRef]
- Markley, F.L. Attitude filtering on SO(3). J. Astronaut. Sci. 2006, 54, 391–413. [Google Scholar] [CrossRef]
- Izadi, M.; Sanyal, A.K. Rigid body attitude estimation based on the Lagrange-D’Alembert principle. Automatica 2014, 50, 2570–2577. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Sanyal, A.K.; McClamroch, N.H. Rigid-body attitude control. IEEE Control Syst. Mag. 2011, 31, 30–51. [Google Scholar]
- Varadarajan, V.S. Lie Groups, Lie Algebras, and Their Representations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 102. [Google Scholar]
- Sanyal, A.K.; Izadi, M.; Bohn, J. An observer for rigid body motion with almost global finite-time convergence. In Proceedings of the ASME Dynamic Systems and Control Conference. American Society of Mechanical Engineers Digital Collection 2014, San Antonio, TX, USA, 22–24 October 2014. [Google Scholar]
- Izadi, M.; Sanyal, A.K. Rigid body pose estimation based on the Lagrange-D’Alembert principle. Automatica 2016, 71, 78–88. [Google Scholar] [CrossRef]
- Stanković, S.S.; Stankovic, M.S.; Stipanovic, D.M. Decentralized parameter estimation by consensus based stochastic approximation. IEEE Trans. Autom. Control 2010, 56, 531–543. [Google Scholar] [CrossRef]
- Olfati-Saber, R. Distributed Kalman filter with embedded consensus filters. In Proceedings of the 44th Conference on Decision and Control, Seville, Spain, 15 December 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 8179–8184. [Google Scholar]
- Olfati-Saber, R. Distributed Kalman filtering for sensor networks. In Proceedings of the 46th Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 5492–5498. [Google Scholar]
- Kar, S.; Moura, J.M. Gossip and distributed Kalman filtering: Weak consensus under weak detectability. IEEE Trans. Signal Process. 2010, 59, 1766–1784. [Google Scholar] [CrossRef]
- Olfati-Saber, R. Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the Conference on Decision and Control IEEE 2009, Shanghai, China, 15–18 December 2009; pp. 7036–7042. [Google Scholar]
- Li, W.; Jia, Y. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Process. 2012, 92, 2464–2470. [Google Scholar] [CrossRef]
- Battistelli, G.; Chisci, L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica 2016, 68, 169–178. [Google Scholar] [CrossRef]
- Wang, J.; Butcher, E.A.; Yucelen, T. Space-based relative orbit estimation using information sharing and the consensus Kalman filter. J. Guid. Control Dyn. 2019, 42, 491–507. [Google Scholar] [CrossRef]
- Mathavaraj, S.; Butcher, E. SE(3)-Constrained Extended Kalman Filtering for Rigid Body Pose Estimation. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2482–2492. [Google Scholar] [CrossRef]
- De Ruiter, A.H.; Forbes, J.R. Discrete-time SO(n)-constrained Kalman filtering. J. Guid. Control Dyn. 2017, 40, 28–37. [Google Scholar] [CrossRef]
- Hill, G.W. Researches in lunar theory. Am. J. Math. 1878, 1, 5–26,29–147,245–260. [Google Scholar] [CrossRef]
- Clohessy, W.H.; Wiltshire, R.S. Terminal guidance for satellite rendezvous. J. Aerosp. Sci. 1960, 27, 653–658,674. [Google Scholar] [CrossRef]
- Alfriend, K.; Vadali, S.R.; Gurfil, P.; How, J.; Brege, L. Spacecraft Formation Flying: Dynamics, Control, and Navigation; Elsevier Astrodynamics Series; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Park, H.E.; Park, S.Y.; Choi, K.H. Satellite formation reconfiguration & station keeping using SDRE technique. Aerosp. Sci. Technol. 2011, 15, 440–452. [Google Scholar]
- Schaub, H.; Junkins, J.L. Analytical Mechanics of Space Systems; American Institute of Aeronautics and Astronautics: Las Vegas, NV, USA, 2009. [Google Scholar]
- Black, H.D. A passive system for determining the attitude of a satellite. AIAA J. 1964, 2, 1350–1351. [Google Scholar] [CrossRef]
- Wang, J.; Butcher, E.A.; Lovell, T.A. Ambiguous orbits in elliptic chief spacecraft relative orbit estimation with range-only measurements. J. Spacecr. Rocket. 2019, 56, 708–724. [Google Scholar] [CrossRef]
- Stadter, P.; Chacos, A.; Heins, R.; Moore, G.; Olsen, E.; Asher, M. Confluence of navigation, communication, and control in distributed spacecraft systems. In Proceedings of the Aerospace Conference IEEE 2001, Big Sky, MT, USA, 10–17 March 2001; Volume 2, pp. 2–563. [Google Scholar]
- Schmidt, S.F. The Kalman filter—Its recognition and development for aerospace applications. J. Guid. Control 1981, 4, 4–7. [Google Scholar] [CrossRef]
- Furuta, K. Alternative solution of discrete-time Kalman filter. Syst. Control Lett. 1994, 22, 429–435. [Google Scholar] [CrossRef]
- Hargrave, P. A tutorial introduction to Kalman filtering. In Proceedings of the IEE colloquium on Kalman Filters: Introduction, Applications and Future Fevelopments 1989, London, UK, 21 February 1989; p. 1. [Google Scholar]
- Zanetti, R.; Majji, M.; Bishop, R.H.; Mortari, D. Norm-constrained Kalman filtering. J. Guid. Control Dyn. 2009, 32, 1458–1465. [Google Scholar] [CrossRef]
- Lee, T. Computational Geometric Mechanics and Control of Rigid Bodies. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Mathavaraj, S.; Padhi, R. Satellite Formation Flying: High Precision Guidance using Optimal and Adaptive Control Techniques; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Scharnagl, J. Distributed Guidance, Navigation and Control for Satellite Formation Flying Missions. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 2022. [Google Scholar]
Satellite | , km | |||||
---|---|---|---|---|---|---|
Second, chief | 0 | 0 | 0 | 0 | ||
Third chief | 0 | 0 | 0 | 0 | ||
Four chief | 0 | 0 | 0 | 0 | ||
Deputy | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathavaraj, S.; Butcher, E.A. Consensus SE(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation. Aerospace 2024, 11, 762. https://doi.org/10.3390/aerospace11090762
Mathavaraj S, Butcher EA. Consensus SE(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation. Aerospace. 2024; 11(9):762. https://doi.org/10.3390/aerospace11090762
Chicago/Turabian StyleMathavaraj, S., and Eric A. Butcher. 2024. "Consensus SE(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation" Aerospace 11, no. 9: 762. https://doi.org/10.3390/aerospace11090762
APA StyleMathavaraj, S., & Butcher, E. A. (2024). Consensus SE(3)-Constrained Extended Kalman Filter for Close Proximity Orbital Relative Pose Estimation. Aerospace, 11(9), 762. https://doi.org/10.3390/aerospace11090762