Flow-Based Assessment of the Impact of an All-Electric Aircraft on European Air Traffic
Abstract
:1. Introduction
2. Adapted BADA Coefficients
2.1. Verification
2.2. SRV2 Energy Network
2.3. Total Energy Model
2.4. Engine Thrust
2.5. Aerodynamic Drag
2.6. Flight Envelope
2.7. Airline Procedure Default Speeds
- Standard CAS below 10,000 ft ();
- Standard CAS between 10,000 ft and Mach transition altitude ();
- Standard Mach number above Mach transition altitude.
3. Simulation Scenario
4. Results
4.1. Single Trajectory Level
4.2. Airport Level
4.3. Network Level
4.4. Discussion
5. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALDT | Actual Landing Time |
AP | Approach |
APM | Aircraft Performance Model |
ARPM | Airline Procedure Model |
ATM | Air Traffic Management |
ATS | Air Traffic System |
AdAS | Advanced ATS Simulation Environment |
BADA | Base of Aircraft Data |
CAS | Calibrated Airspeed |
CPACS | Common Parametric Aircraft Configuration Schema |
CR | Cruise |
DDR | Demand Data Repository |
EASA | European Union Aviation Safety Agency |
eVTOL | Electric Vertical Take-Off and Landing |
GSE | Ground Service Equipment |
HEA | Hybrid Electric Aircraft |
IC | Initial Climb |
ICAO | International Civil Aviation Organization |
IFPS | Flight Plan Processing System |
ISA | International Standard Atmosphere |
KPIs | Key Performance Indicators |
LD | Landing |
MSL | Mean Sea Level |
MTOW | Maximum Take-Off Weight |
OPF | Operations Performance File |
PMAD | Power Management and Distribution |
ROCD | Rate of Climb or Descent |
RPM | Revolutions Per Minute |
SE²A | Sustainable and Energy-Efficient Aviation |
SRV2 | SE²A Short-Range Aircraft Version 2 |
TEM | Total-Energy Model |
TO | Take Off |
TOD | Top of Descent |
ULD | Unit Load Device |
AC | Air Conditioning Unit |
AS | Air Start Unit |
BULK | Bulk Train |
CAT | Catering Truck |
CB | Conveyor Belt |
CLEAN | Cleaning Truck |
FUEL | Fuel Hydrant Dispenser or Tanker |
GPU | Ground Power Unit |
LDCL | Lower Deck Cargo Loader |
LV | Lavatory Vehicle |
PBB | Passenger Boarding Bridge |
PS | Passenger Stairs |
TOW | Tow Tractor |
ULD | ULD Train |
WV | Portable Water Vehicle |
EDDF | Frankfurt Airport |
EDDL | Düsseldorf Airport |
EDDM | Munich Airport |
EDDT | Berlin Tegel Airport |
EFHK | Helsinki Airport |
EGAC | George Best Belfast City Airport |
EGBB | Birmingham Airport |
EGCC | Manchester Airport |
EGHI | Southampton Airport |
EGJB | Guernsey Airport |
EGJJ | Jersey Airport |
EGLL | Heathrow Airport |
EGPH | Edinburgh Airport |
EHAM | Amsterdam Airport Schiphol |
EIDW | Dublin Airport |
EKCH | Copenhagen Airport |
ELLX | Luxembourg Airport |
EPWA | Warsaw Chopin Airport |
EVRA | Riga International Airport |
GCFV | Fuerteventura Airport |
GCLP | Gran Canaria Airport |
GCRR | Lanzarote Airport |
GCXO | Tenerife North Airport |
KORD | O’Hare International Airport |
LEBL | Barcelona El Prat Airport |
LEIB | Ibiza Airport |
LEMD | Madrid–Barajas Airport |
LEPA | Palma de Mallorca Airport |
LEPA | Palma de Mallorca Airport |
LFPG | Paris Charles de Gaulle Airport |
LGAV | Athens International Airport |
LIRF | Rome Fiumicino Airport |
LOWW | Vienna International Airport |
LPPT | Lisbon Airport |
LSZH | Zurich Airport |
Appendix A
Model Category | Symbols | Units | Description |
---|---|---|---|
Aircraft type | - | number of engines | |
engine type | string | Jet, Turboprop or Piston | |
wake category | string | J, H, M or L | |
Mass | tonnes | reference mass | |
tonnes | minimum mass | ||
tonnes | maximum mass | ||
tonnes | maximum payload mass | ||
Flight envelope | kts | maximum operating speed | |
- | maximum operating Mach number | ||
feet | maximum operating altitude | ||
feet | maximum altitude at MTOW and ISA | ||
Aerodynamics | S | m² | reference wing surface area |
- | parasitic drag coefficient | ||
- | induced drag coefficient | ||
- | parasite drag coeff. (landing gear) | ||
kts | stall speed [TO, IC, CR, AP, LD] | ||
Engine thrust | kt-N | 1st max. climb thrust coefficient | |
feet | 2nd max. climb thrust coefficient | ||
N | 3rd max. climb thrust coefficient | ||
- | low altitude descent thrust coefficient | ||
- | high altitude descent thrust coefficient | ||
feet | transition altitude for descent thrust | ||
- | approach thrust coefficient | ||
- | landing thrust coefficient | ||
Fuel flow | 1st thrust specific fuel consumption coeff. | ||
kts | 2nd thrust specific fuel consumption coeff. | ||
1st descent fuel flow coefficient | |||
feet | 2nd descent fuel flow coefficient | ||
- | cruise fuel flow correction coefficient | ||
Ground movement | TOL | m | take-off length |
LDL | m | landing length | |
span | m | aircraft wingspan | |
length | m | aircraft length |
Appendix B
Appendix B.1
Appendix B.2
Appendix B.3
Input Data | Description | Reference |
---|---|---|
Flight plan | The so6 Model 1 is used to obtain the set of 4D flight segments consisting of waypoints, information on aircraft type, origin–destination, callsigns, and flight identifiers. It is the last saved flight plan after all the modifications with Integrated Initial Flight Plan Processing System (IFPS) messages. | All this information is managed by EUROCONTROL and was accessed via the Demand Data Repository (DDR) [35]. |
Navigation | Standard Instrument Departure Routes and Standard Terminal Arrival Routes, holding pattern parameters. | Jeppesen [36]. |
BADA | The Base of Aircraft Data REVISION 3.9 is a collection of aircraft operation performance parameters and airline procedure parameters, which is used for the simulation of flight trajectories. | All files are maintained within a configuration management system at EUROCONTROL [10,11]. |
Input Data | Description | Reference |
---|---|---|
Infrastructure | Information on airport and infrastructure, such as runways, taxiways, and gates. | OurAirports [37], OpenStreetMap [25]. |
Process times | Aircraft turnaround times including cleaning, catering, re-fuelling, and cargo and baggage handling, plus getting passengers onto and off of the airplane. | Deterministic turnaround sub-process durations were derived from Gantt charts provided by the aircraft manufacturer; see, for example [21]. |
Appendix B.4
Airport ICAO | Avg. Punctuality Difference [min] | Share of SRV2 [%] | Number of Arrivals (SRV2) | Number of Arrivals (Ref) |
---|---|---|---|---|
EGJB | −198.6 | 65.22 | 23 | 32 |
EGHI | −193.76 | 67.74 | 31 | 51 |
ESSB | −182.96 | 80.95 | 21 | 21 |
EGAC | −175.81 | 58.33 | 24 | 36 |
GCXO | −147.5 | 45.45 | 55 | 90 |
EGJJ | −121.78 | 30.23 | 43 | 56 |
LOWI | −96.97 | 24.00 | 25 | 30 |
EVRA | −87.18 | 29.17 | 96 | 110 |
ELLX | −81.79 | 21.54 | 65 | 75 |
GCLP | −81.21 | 25.19 | 135 | 166 |
LOWG | −79.17 | 20.00 | 20 | 22 |
LFRN | −74.99 | 20.00 | 20 | 26 |
EICK | −68.62 | 15.63 | 32 | 36 |
LPPD | −62.19 | 20.83 | 24 | 34 |
GCRR | −58.91 | 19.74 | 76 | 87 |
LDZA | −56.38 | 21.74 | 46 | 55 |
EGPF | −52.64 | 16.49 | 97 | 102 |
GCFV | −49.12 | 17.86 | 84 | 93 |
ENTC | −47.72 | 18.52 | 27 | 27 |
LGAV | −47.33 | 13.33 | 315 | 361 |
EGPD | −47.24 | 25.00 | 28 | 33 |
EGBB | −47.1 | 17.89 | 123 | 137 |
EGMC | −45.64 | 16.00 | 25 | 27 |
LGSR | −43.36 | 13.21 | 53 | 57 |
LYBE | −43.35 | 15.91 | 88 | 93 |
LOWS | −41.13 | 25.00 | 32 | 36 |
LFKB | −38.38 | 12.86 | 70 | 73 |
EETN | −38.28 | 17.78 | 45 | 50 |
EFHK | −38.22 | 16.07 | 224 | 233 |
LFKC | −37.61 | 13.64 | 22 | 27 |
ENBO | −37.18 | 10.00 | 20 | 20 |
ENBR | −36.47 | 16.36 | 55 | 56 |
EPWA | −34.2 | 11.11 | 243 | 254 |
EGLC | −33.5 | 25.81 | 31 | 31 |
LFTH | −33.45 | 8.70 | 23 | 25 |
LFKJ | −33.43 | 12.50 | 56 | 60 |
EGNT | −33 | 12.50 | 64 | 65 |
UKOO | −32.35 | 9.52 | 21 | 21 |
EDDS | −31.75 | 8.97 | 145 | 152 |
LFMT | −31.18 | 10.71 | 28 | 28 |
EGPH | −30.49 | 11.85 | 135 | 145 |
ENVA | −30.48 | 13.04 | 46 | 46 |
LPMA | −29.94 | 12.82 | 39 | 39 |
LFML | −29.79 | 7.26 | 124 | 127 |
LRCL | −29.31 | 9.09 | 33 | 34 |
LFKF | −29.07 | 6.98 | 43 | 46 |
EGCC | −28.21 | 11.20 | 259 | 275 |
EKBI | −27.56 | 8.00 | 50 | 51 |
EGFF | −26.97 | 4.17 | 24 | 26 |
LGZA | −25.55 | 8.11 | 37 | 38 |
Airport ICAO | Avg. Punctuality Difference [min] | Share of SRV2 [%] | Number of Departures (SRV2) | Number of Departures (Ref) |
---|---|---|---|---|
ESSB | −222.76 | 76.19 | 21 | 22 |
EGHI | −161.82 | 59.46 | 37 | 52 |
EGAC | −157.33 | 67.74 | 31 | 38 |
GCXO | −149.16 | 50.82 | 61 | 89 |
EGJB | −133 | 55.56 | 27 | 36 |
EGJJ | −109.51 | 30.95 | 42 | 56 |
EVRA | −80.79 | 29.17 | 96 | 111 |
LOWS | −76.4 | 25.00 | 32 | 35 |
GCLP | −72.8 | 27.78 | 144 | 168 |
LDZA | −68.48 | 26.00 | 50 | 57 |
LOWI | −67.33 | 24.00 | 25 | 29 |
EGLC | −61.97 | 22.22 | 36 | 36 |
EGMC | −59.42 | 19.23 | 26 | 26 |
ELLX | −56.04 | 27.78 | 72 | 76 |
GCRR | −55.96 | 16.44 | 73 | 88 |
EGPD | −55.18 | 32.26 | 31 | 34 |
LPPD | −52.43 | 25.00 | 28 | 36 |
LFKB | −50 | 16.44 | 73 | 75 |
LGAV | −48.13 | 16.57 | 338 | 372 |
LFKC | −46.24 | 13.64 | 22 | 26 |
EGBB | −46 | 17.61 | 142 | 153 |
ENTC | −45.81 | 14.81 | 27 | 27 |
EGPF | −43.31 | 16.51 | 109 | 112 |
LFTH | −42.59 | 8.33 | 24 | 26 |
EKBI | −41.75 | 11.76 | 51 | 51 |
GCFV | −40.71 | 12.50 | 80 | 94 |
ENVA | −39.08 | 10.42 | 48 | 48 |
ENBR | −37.35 | 14.29 | 63 | 64 |
LGSR | −36.99 | 10.42 | 48 | 54 |
LFKF | −34.69 | 8.51 | 47 | 49 |
LOWG | −34.36 | 20.00 | 20 | 22 |
LPMA | −31 | 13.16 | 38 | 38 |
EETN | −30.52 | 20.00 | 50 | 52 |
EGPH | −30.31 | 14.77 | 149 | 154 |
LDZD | −30.14 | 8.57 | 35 | 36 |
EFHK | −30.06 | 13.24 | 219 | 231 |
EPKK | −30.05 | 10.61 | 66 | 67 |
LICJ | −29.43 | 8.05 | 87 | 89 |
LWSK | −28.84 | 12.00 | 25 | 25 |
EDDS | −28.39 | 9.55 | 157 | 163 |
LFKJ | −27.34 | 12.28 | 57 | 61 |
EPWA | −26.62 | 9.62 | 239 | 250 |
LYBE | −26.61 | 12.50 | 88 | 96 |
LDSP | −25.71 | 6.93 | 101 | 106 |
EICK | −25.54 | 16.13 | 31 | 35 |
LFBZ | −25.54 | 6.90 | 29 | 31 |
EGCC | −25.42 | 10.34 | 290 | 306 |
LEMH | −25.05 | 9.35 | 107 | 111 |
EYVI | −23.55 | 9.84 | 61 | 62 |
LEIB | −23.54 | 6.70 | 194 | 202 |
References
- Karpuk, S.; Elham, A. Initial Conceptual Design of a Short-Range Regional Aircraft; SE²A B5.1 Report SR02; TU Braunschweig: Braunschweig, Germany, 2021. [Google Scholar]
- Karpuk, S.; Elham, A. Influence of Novel Airframe Technologies on the Feasibility of Fully-Electric Regional Aviation. Aerospace 2021, 8, 163. [Google Scholar] [CrossRef]
- Schäfer, A.; Barrett, S.; Doyme, K.; Dray, L.; Gnadt, A.; Self, R.; O’Sullivan, A.; Synodinos, A.; Torija, A. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 2019, 4, 160–166. [Google Scholar] [CrossRef]
- Hou, B.; Bose, S.; Haran, K. Powering electric aircraft at o’hare airport: A case study. In Proceedings of the 2020 IEEE Power and Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; IEEE Computer Society: Washington, DC, USA, 2020; p. 9281871. [Google Scholar] [CrossRef]
- Salucci, F.; Trainelli, L.; Faranda, R.; Longo, M. An optimization Model for Airport Infrastructures in Support to Electric Aircraft. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ortega-Vazquez, M.; Sarker, M.; Pandzic, H. Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Trans. Power Syst. 2014, 30, 901–910. [Google Scholar] [CrossRef]
- Schmidt, M.; Paul, A.; Cole, M.; Ploetner, K.O. Challenges for ground operations arising from aircraft concepts using alternative energy. J. Air Transp. Manag. 2016, 56 Pt B, 107–117. [Google Scholar] [CrossRef]
- Doctor, F.; Budd, T.; Williams, P.; Prescott, M.; Iqbal, R. Modelling the effect of electric aircraft on airport operations and infrastructure. Technol. Forecast. Soc. Chang. 2022, 177. [Google Scholar] [CrossRef]
- Yildiz, B.; Förster, P.; Langner, J.; Feuerle, T.; Hecker, P. A Hybrid Gate-to-Gate Simulation Environment for the Air Traffic System. Aerospace 2023, 10, 882. [Google Scholar] [CrossRef]
- EUROCONTROL. User Manual for the Base of Aircraft Data (BADA) Revision 3.10; Technical Report 12/04/10-45; EUROCONTROL: Brussels, Belgium, 2012.
- EUROCONTROL. Base of Aircraft Data (Bada) Aircraft Performance Modelling Report; EEC Technical/Scientific Report No. 2009-009; EUROCONTROL: Brussels, Belgium, 2009.
- Bilimoria, K.D.; Sridhar, B.; Grabbe, S.R.; Chatterji, G.B.; Sheth, K. FACET: Future ATM Concepts Evaluation Tool. Air Traffic Control Q. 2001, 9, 1. [Google Scholar] [CrossRef]
- SAAM Reference Manual; Technical Report, Release 3.7.5; EUROCONTROL: Brussels, Belgium, 2010. Available online: https://www.eurocontrol.int/database/system-traffic-assignment-and-analysis-macroscopic-level (accessed on 18 May 2023).
- Hoekstra, J.M.; Ellerbroek, J. BlueSky ATC simulator project: An open-data and open-source approach. In Proceedings of the 7th International Conference on Research in Air Transportation, Philadelphia, PA, USA, 20–24 June 2022. [Google Scholar]
- Poles, D.; Nuic, A.; Mouillet, V. Advanced aircraft performance modeling for ATM: Analysis of BADA model capabilities. In Proceedings of the 29th Digital Avionics Systems Conference, Salt Lake City, UT, USA, 3–7 October 2010; pp. 1.D.1-1–1.D.1-14. [Google Scholar] [CrossRef]
- Harada, A.; Miyamoto, Y.; Miyazawa, Y.; Funabiki, K. Accuracy Evaluation of an Aircraft Performance Model with Airliner Flight Data. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2013, 11, 79–85. [Google Scholar] [CrossRef]
- Sánchez, C.; Mouillet, V.; Sánchez, J.; Ruiz, M.; Nuic, A. BADA eVTOL Performance Model for UTM Traffic Simulation and Analysis. 2021. Available online: https://www.sesarju.eu/sites/default/files/documents/sid/2021/papers/SIDs_2021_paper_91.pdf (accessed on 9 July 2024).
- Förster, P.; Yildiz, B.; Feuerle, T.; Hecker, P. Approach for Cost Functions for the Use in Trade-Off Investigations Assessing the Environmental Impact of a Future Energy Efficient European Aviation. Aerospace 2022, 9, 167. [Google Scholar] [CrossRef]
- Botero, E.M.; Wendorff, A.; MacDonald, T.; Variyar, A.; Vegh, J.M.; Lukaczyk, T.W.; Alonso, J.J.; Orra, T.H.; Ilario da Silva, C. SUAVE: An Open-Source Environment for Conceptual Vehicle Design and Optimization. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [Google Scholar]
- Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Airbus. Aircraft Characteristics Airport and Maintenance Planning; A320, Revision No. 39—1 December 2022; Airbus: Leiden, The Netherlands, 2022. [Google Scholar]
- EUROCONTROL. Airport Capacity Imbalance-Study Performance Review Commission. Technical Note. 2020. Available online: https://www.eurocontrol.int/sites/default/files/2020-12/eurocontrol-prc-technical-note-airport-capacity-imbalance-11122020.pdf (accessed on 10 July 2024).
- Schäfer, M.; Strohmeier, M.; Lenders, V.; Martinovic, I.; Wilhelm, M. Bringing up OpenSky: A Large-scale ADS-B Sensor Network for Research. In Proceedings of the 13th IEEE/ACM International Symposium on Information Processing in Sensor Networks (IPSN), Berlin, Germany, 15–17 April 2014; pp. 83–94. Available online: https://opensky-network.org (accessed on 10 July 2024).
- EUROCONTROL. Point Merge-Improving and Harmonising Arrival Operations. Available online: https://www.eurocontrol.int/concept/point-merge (accessed on 10 January 2024).
- Minghini, M.; Frassinelli, F. OpenStreetMap history for intrinsic quality assessment: Is OSM up-to-date? Open Geospat. Data Softw. Stand. 2019, 4, 9. [Google Scholar] [CrossRef]
- KPI Overview. ICAO Ganp Portal. Available online: https://www.icao.int/SAM/Documents/2021-RLA06901-TallerVOLIII-1/KPI%20GANP%206.pdf (accessed on 18 January 2023).
- Alice Commuter Aircraft. Available online: https://www.aerospace-technology.com/projects/alice-commuter-aircraft/ (accessed on 17 April 2024).
- Athens Airport Commissions 15.8 MW Solar Power Plant. Available online: https://balkangreenenergynews.com/athens-airport-commissions-15-8-mw-solar-power-plant/ (accessed on 6 May 2024).
- Bouarfa, S.; Blom, H.A.P.; Curran, R. Agent-Based Modeling and Simulation of Coordination by Airline Operations Control. IEEE Trans. Emerg. Top. Comput. 2016, 4, 9–20. [Google Scholar] [CrossRef]
- EUROCONTROL. Enhanced Tactical Flow Management System. Available online: https://www.eurocontrol.int/system/enhanced-tactical-flow-management-system (accessed on 17 July 2024).
- Clemente, M. Building a real-world traffic micro-simulation scenario from scratch with SUMO. In Proceedings of the Sumo User Conference, Virtual, 9–11 May 2022; Volume 3, pp. 215–230. [Google Scholar] [CrossRef]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wiessner, E. Microscopic Traffic Simulation using SUMO. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar] [CrossRef]
- Tillmann, A.M.; Joormann, I.; Ammann, S.C.L. Reproducible air passenger demand estimation. J. Air Transp. Manag. 2023, 112, 102462. [Google Scholar] [CrossRef]
- Talwar, C.; Joormann, I.; Ginster, R.; Spengler, T.S. How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for european short haul flights. J. Air Transp. Manag. 2023, 112, 102455. [Google Scholar] [CrossRef]
- EUROCONTROL. 2018 Demand Data Repository. Historical Page. Available online: https://www.eurocontrol.int/ddr (accessed on 25 June 2019).
- Jeppesen. NavData. Available online: https://ww2.jeppesen.com/navigation-solutions/navdata/ (accessed on 13 December 2020).
- OurAirports. Available online: https://ourairports.com/data/ (accessed on 15 June 2020).
Parameter | SRV2 | AT72 | Units |
---|---|---|---|
Maximum range | 797 | 862 | NM |
Maximum take-off weight | 35,745 | 21,500 | kg |
Operating empty weight | 28,244 | 12,300 | kg |
Propulsion weight | 466 | 450 | kg |
Battery weight | 13,861 | - | kg |
Maximum Mach number | 0.45 | 0.55 | - |
Take-off field length | 1392 | 1290 | m |
Landing field length | 1027 | 1067 | m |
Airport (ICAO) | Runway Configuration | Arrival Procedure | Parking Pos. |
---|---|---|---|
Athens (LGAV) | ARR: 21L, 21R DEP: 21L | Vectoring, holding stack | 66 |
Amsterdam/Schiphol (EHAM) | ARR: 27, 36C, 36R DEP: 36L, 24 | Vectoring, holding stack | 223 |
Frankfurt (EDDF) | ARR: 25L, 25R, 25C DEP: 18, 25C | Tromboning | 165 |
Munich (EDDM) | ARR: 26L, 26R DEP: 26L, 26R | Tromboning | 88 |
Dublin (EIDW) | ARR: 28 DEP: 34 | Point merge | 74 |
Paris-Charles-de-Gaulle (LFPG) | ARR: 26L, 27R DEP: 26R, 27L | Point merge, vec- toring, holding | 280 |
London/Heathrow (EGLL) | ARR: 27L, 27R DEP: 27L, 27R | Vectoring, holding stack | 180 |
Rome/Fiumicino (LIRF) | ARR: 34L, 34R DEP: 25 | Tromboning | 150 |
Barcelona (LEBL) | ARR: 25R, 25L DEP: 20 | Tromboning | 134 |
Madrid/Barajas (LEMD) | ARR: 32L, 32R DEP: 36L, 36R | Vectoring, holding stack | 179 |
Zurich (LSZH) | ARR: 34 DEP: 32 | Vectoring, holding stack | 106 |
Palma de Mallorca (LEPA) | ARR: 24L, 24R DEP: 24R | Vectoring, holding stack | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, B.; Förster, P.; Feuerle, T.; Hecker, P. Flow-Based Assessment of the Impact of an All-Electric Aircraft on European Air Traffic. Aerospace 2024, 11, 602. https://doi.org/10.3390/aerospace11080602
Yildiz B, Förster P, Feuerle T, Hecker P. Flow-Based Assessment of the Impact of an All-Electric Aircraft on European Air Traffic. Aerospace. 2024; 11(8):602. https://doi.org/10.3390/aerospace11080602
Chicago/Turabian StyleYildiz, Bekir, Peter Förster, Thomas Feuerle, and Peter Hecker. 2024. "Flow-Based Assessment of the Impact of an All-Electric Aircraft on European Air Traffic" Aerospace 11, no. 8: 602. https://doi.org/10.3390/aerospace11080602
APA StyleYildiz, B., Förster, P., Feuerle, T., & Hecker, P. (2024). Flow-Based Assessment of the Impact of an All-Electric Aircraft on European Air Traffic. Aerospace, 11(8), 602. https://doi.org/10.3390/aerospace11080602