Data Reduction Technologies in Prediction of Propeller Noise
Abstract
:1. Introduction
2. Modeling Approach
2.1. Proper Orthogonal Decomposition (POD)
- We extract the fluctuating components of the flow by subtracting the mean: ;
- We then find the correlation matrix of the snapshot matrix ;
- We then find the eigenvalue and vectors of the correlation matrix such that
- The spatial modes are reconstructed as ;
- The reconstructed field .
2.2. Dynamic Mode Decomposition (DMD)
- a.
- The equation that relates each snapshot to the next:
- b.
- We then take a singular value decomposition of X:
- c.
- Given the rank or number of modes for reconstruction, r, are truncated from 1 to r. The low-rank subspace matrix .
- d.
- Next, the eigenvalues and eigenvectors are obtained:
- e.
- The real-space DMD mode is computed as
- f.
- The reconstructed reduced-order model is then given as
2.3. Choice of Mode Truncation
- If then
- If and then is replaced by the aspect ratio :
3. Inputs and Data to Be Reduced
Inputs
4. Results
4.1. High-Fidelity Data
4.2. Near-Field Data Reduction
- i.
- POD Results
- ii.
- DMD Results
4.3. Far-Field Acoustic Pressure and Spectral Reconstruction
Spectral Reconstruction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutin, L. On the Sound Field of a Rotating Propeller. 1948. Available online: https://ntrs.nasa.gov/citations/20030068996 (accessed on 3 August 2022).
- Deming, A.F. Propeller Rotation Noise Due to Torque and Thrust. J. Acoust. Soc. Am. 1940, 12, 173–182. [Google Scholar] [CrossRef]
- Kim, S.; Kinnas, S.A. Numerical Prediction of Underwater Noise on a Flat Hull Induced by Twin or Podded Propeller Systems. J. Sound Vib. 2022, 539, 117256. [Google Scholar] [CrossRef]
- Belibassakis, K.; Prospathopoulos, J. A 3d-BEM for Underwater Propeller Noise Propagation in the Ocean Environment Including Hull Scattering Effects. Ocean Eng. 2023, 286, 115544. [Google Scholar] [CrossRef]
- Lumley, J.L. Coherent Structures in Turbulence. Transit. Turbul. 1981, 1981, 215–242. [Google Scholar] [CrossRef]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annu. Rev. Fluid Mech. 2003, 25, 539–575. [Google Scholar] [CrossRef]
- Towne, A.; Schmidt, O.T.; Colonius, T. Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis. J. Fluid Mech. 2018, 847, 821–867. [Google Scholar] [CrossRef]
- Peters, N.J.; Wissink, A.; Ekaterinaris, J. A Mode Based Reduced Order Model for Rotorcraft Store Separation. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Cabell, R.H.; Kegerise, M.A.; Cox, D.E.; Gibbs, G.P. Experimental Feedback Control of Flow-Induced Cavity Tones. AIAA J. 2012, 44, 1807–1815. [Google Scholar] [CrossRef]
- Brunton, S.L.; Rowley, C.W.; Williams, D.R. Reduced-Order Unsteady Aerodynamic Models at Low Reynolds Numbers. J. Fluid Mech. 2013, 724, 203–233. [Google Scholar] [CrossRef]
- Rowley, C.W.; Dawson, S.T.M. Model Reduction for Flow Analysis and Control. Annu. Rev. Fluid Mech. 2017, 49, 387–417. [Google Scholar] [CrossRef]
- Valbuena, M.; Sarabia, D.; de Prada, C. A Reduced-Order Approach of Distributed Parameter Models Using Proper Orthogonal Decomposition. Comput. Aided Chem. Eng. 2011, 29, 26–30. [Google Scholar]
- Dehghan, M.; Abbaszadeh, M. A Combination of Proper Orthogonal Decomposition–Discrete Empirical Interpolation Method (POD–DEIM) and Meshless Local RBF-DQ Approach for Prevention of Groundwater Contamination. Comput. Math. Appl. 2018, 75, 1390–1412. [Google Scholar] [CrossRef]
- Fic, A.; Białecki, R.A.; Kassab, A.J. Solving Transient Nonlinear Heat Conduction Problems by Proper Orthogonal Decomposition and the Finite-Element Method. Numer. Heat Transfer Part B Fundam. 2005, 48, 103–124. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.C.; Guo, Y. Model Identification of Reduced Order Fluid Dynamics Systems Using Deep Learning. Wiley Online Libr. 2017, 86, 255–268. [Google Scholar] [CrossRef]
- Mankbadi, R.R.; Afari, S.O.; Golubev, V.V. High-Fidelity Simulations of Noise Generation in a Propeller-Driven Unmanned Aerial Vehicle. AIAA J. 2021, 59, 1020–1039. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition of Numerical and Experimental Data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Brunton, S.L.; Steven, L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2022; Volume 472. [Google Scholar]
- Gavish, M.; Donoho, D.L. The Optimal Hard Threshold for Singular Values Is 4/√3. arXiv 2013, arXiv:1305.5870. [Google Scholar] [CrossRef]
- Mankbadi, R.R. Transition, Turbulence, and Noise; Springer: Boston, MA, USA, 1994; ISBN 978-0-7923-9481-5. [Google Scholar]
- Shur, M.L.; Strelets, M.K.; Travin, A.K.; Spalart, P.R. Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction. AIAA J. 2000, 38, 784–792. [Google Scholar] [CrossRef]
- Spalart, P.; Allmaras, S. A One-Equation Turbulence Model for Aerodynamic Flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1992. [Google Scholar]
- Spalart, P.R.; Jou, W.-H.; Strelets, M.; Allmaras, S.R. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach; Advances in DNS/LES: Direct Numerical Simulation and Large Eddy Simulation; Greyden Press: Dayton, OH, USA, 1997; Volume 1, ISBN 1570743657. [Google Scholar]
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar] [CrossRef]
- Brentner, K.S. Modeling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2000. [Google Scholar]
- Brentner, K.S.; Farassat, F. Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces. AIAA J. 1998, 36, 1379–1386. [Google Scholar] [CrossRef]
- VtkToolbox—File Exchange—MATLAB Central. Available online: https://www.mathworks.com/matlabcentral/fileexchange/94993-vtktoolbox (accessed on 3 August 2022).
- Intaratep, N.; Alexander, W.N.; Devenport, W.J.; Grace, S.M.; Dropkin, A. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016. [Google Scholar] [CrossRef]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear. Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Dawson, S.T.M.; Hemati, M.S.; Williams, M.O.; Rowley, C.W. Characterizing and Correcting for the Effect of Sensor Noise in the Dynamic Mode Decomposition. Exp. Fluids 2015, 57, 42. [Google Scholar] [CrossRef]
- Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic Mode Decomposition with Control. SIAM J. Appl. Dyn Syst. 2014, 15, 142–161. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Yu, X.; Wang, C. A Krylov-Based Proper Orthogonal Decomposition Method for Elastodynamics Problems with Isogeometric Analysis. Eng. Anal. Bound Elem. 2021, 133, 71–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afari, S.; Mankbadi, R. Data Reduction Technologies in Prediction of Propeller Noise. Aerospace 2024, 11, 453. https://doi.org/10.3390/aerospace11060453
Afari S, Mankbadi R. Data Reduction Technologies in Prediction of Propeller Noise. Aerospace. 2024; 11(6):453. https://doi.org/10.3390/aerospace11060453
Chicago/Turabian StyleAfari, Samuel, and Reda Mankbadi. 2024. "Data Reduction Technologies in Prediction of Propeller Noise" Aerospace 11, no. 6: 453. https://doi.org/10.3390/aerospace11060453
APA StyleAfari, S., & Mankbadi, R. (2024). Data Reduction Technologies in Prediction of Propeller Noise. Aerospace, 11(6), 453. https://doi.org/10.3390/aerospace11060453