Reliability-Based Topology Optimization with a Proportional Topology for Reliability
Abstract
:1. Introduction
2. Topology Optimization Problem
gj(ρ) ≤ 0 j = 1, 2,…, N
0 <ρl ≤ ρ ≤ ρu
g1(ρ) = σ − σa ≤ 0
0 < ρl ≤ ρ ≤ ρu
Prb(g1 (ρ, a) > 0) ≤ pf
0 < ρ l ≤ ρ ≤ ρ u
3. Proportional Topology Optimization for Reliability (PTOr)
3.1. Uncertainty Quantification with Latin Hypercube Sampling (LHS)
3.2. PTOr
4. Numerical Examples
4.1. MATLAB Programs
4.2. Test Problems
4.2.1. Cantilever Beam with Upper-Right Load
4.2.2. Cantilever Beam with Middle-Right Load
4.2.3. Cantilever Beam with Bottom-Right Load
4.2.4. MBB Beam
4.2.5. Validation Results with MCS
4.2.6. Aircraft Pylon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. LHS Sampling and LHS Script Files
Appendix A.2. runPTOsr.m
Appendix A.3. PTOsr_MBB.m Script Files
References
- Bureerat, S.; Kunakote, T. Topological design of structures using population-based optimization methods. Inverse Probl. Sci. Eng. 2006, 14, 589–607. [Google Scholar] [CrossRef]
- Bendsϕe, M.P.; Sigmund, O. Topology Optimization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Fujii, D.; Kikuchi, N. Improvement of numerical instabilities in topology optimization using the SLP method. Struct. Multidiscip. Optim. 2000, 19, 113–121. [Google Scholar] [CrossRef]
- Bendsϕe, M.P.; Ben-Tal, A.; Zowe, J. Optimization methods for truss geometry and topology design. Struct. Multidiscip. Optim. 1994, 7, 141–159. [Google Scholar] [CrossRef]
- Saggere, L.; Kota, S. Static shape control of smart structures using compliant mechanisms. AIAA J. 1999, 37, 572–578. [Google Scholar] [CrossRef]
- Lu, K.J.; Kota, S. Design of compliant mechanism for morphing structural shapes. J. Intell. Mater. Syst. Struct. 2003, 14, 379–391. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in MATLAB. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Kane, C.; Schoenauer, M. Topological optimum design using genetic algorithms. Control Cybern 1996, 25, 1059–1088. [Google Scholar]
- Jakiela, M.; Chapman, C.; Duda, J.; Adewuya, A.; Saitou, K. Continuum structural topology design with genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 86, 339–356. [Google Scholar] [CrossRef]
- Wang, S.Y.; Tai, K. Graph representation for structural topology optimization using genetic algorithms. Comput. Struct. 2004, 82, 1609–1622. [Google Scholar] [CrossRef]
- Woon, S.Y.; Tong, L.; Querin, O.M.; Steven, G.P. Effective optimisation of continuum topologies through a multi-GA system. Comput. Methods Appl. Mech. Eng. 2005, 194, 3416–3437. [Google Scholar] [CrossRef]
- Madeiraa, J.A.; Rodriguesa, H.C.; Pinam, H. Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. Struct. Multidiscip. Optim. 2006, 32, 31–39. [Google Scholar] [CrossRef]
- Bureerat, S.; Limtragool, J. Performance enhancement of evolutionary search for topology optimization. Finite Elem. Anal. Des. 2006, 42, 547–566. [Google Scholar] [CrossRef]
- Bureerat, S.; Limtragool, J. Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem. Anal. Des. 2008, 44, 738–747. [Google Scholar] [CrossRef]
- Kunakote, T.; Bureerat, S. Structural topology optimization using multiobjective evolutionary algorithms. Eng.Optim. 2011, 43, 541–557. [Google Scholar] [CrossRef]
- Sleesongsom, S.; Bureerat, S. Topology Optimisation Using MPBILs and Multi-Grid Ground Element. Appl. Sci. 2018, 8, 271. [Google Scholar] [CrossRef]
- Guirguis, D.; Aly, M.F. A derivative-free level-set method for topology optimization. Finite Elem. Anal. Des. 2016, 120, 41–56. [Google Scholar] [CrossRef]
- Ram, L.; Sharma, D. Evolutionary and GPU computing for topology optimization of structures. Swarm Evol. Comput. 2017, 35, 1–13. [Google Scholar] [CrossRef]
- Guirguis, D.; Melek, W.W.; Aly, M.F. High-resolution non-gradient topology optimization. J. Comput. Phys. 2018, 372, 107–125. [Google Scholar] [CrossRef]
- Guirguis, D.; Aulig, N.; Picelli, R.; Zhu, B.; Zhou, Y.; Vicente, W.; Sai Tou, K. Evolutionary black-box topology optimization: Challenges and promises. IEEE Trans. Evol. Comput. 2020, 24, 613–633. [Google Scholar] [CrossRef]
- Rostami, P.; Marzbanrad, J. Identification of Optimal Topologies for Continuum Structures Using Metaheuristics: A Comparative Study. Arch. Computat. Methods Eng. 2021, 28, 4687–4714. [Google Scholar] [CrossRef]
- Goto, T.G.; Najafabadi, H.R.; Falheiro, M.F.; Moura, R.T.; Driemeier, L.; Barari, A.; Tsuzuki, M.S.G.; Martins, T.C. A new non-gradient-based topology optimization algorithm with black–white density and manufacturability constraints. Structures 2023, 47, 1900–1911. [Google Scholar] [CrossRef]
- Biyikli, E.; To, A.C. Proportional topology optimization: A new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in matlab. PLoS ONE 2015, 10, 5014–5041. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, W.; Du, R.; Wang, S.; Wang, Y. Improved proportional topology optimization algorithm for solving minimum compliance problem. Struct. Multidiscip. Optim. 2020, 62, 475–493. [Google Scholar] [CrossRef]
- Ullah, Z.; Ullah, B.; Khan, W.; ul Islam, S. Proportional topology optimisation with maximum entropy-based meshless method for minimum compliance and stress constrained problems. Eng. Comput. 2022, 38, 5541–5561. [Google Scholar] [CrossRef]
- Tran, M.T.; Nguyen, M.N.; Bui, T.Q.; Nguyen, H.Q. An enhanced proportional topology optimization with virtual elements: Formulation and numerical implementation. Finite Elem. Anal. Des. 2023, 222, 103958. [Google Scholar] [CrossRef]
- Yin, H.; Yu, D.; Xia, R. Reliability-based topology optimization for structures using fuzzy set model. Comput. Methods Appl. Mech. Eng. 2018, 333, 197–217. [Google Scholar] [CrossRef]
- Kharmanda, G.; Olhoff, N.; Mohamed, A.; Lemaire, M. Reliability-based topology optimization. Struct. Multidiscip. Optim. 2004, 26, 295–307. [Google Scholar] [CrossRef]
- Sleesongsom, S.; Bureerat, S. Multi-objective reliability-based topology optimization of structures using a fuzzy set model. J. Mech. Sci. Technol. 2020, 34, 3973–3980. [Google Scholar] [CrossRef]
- Dunning, P.; Kim, H. Robust topology optimization: Minimization of expected and variance of compliance. AIAA Journal 2013, 51, 2656–2664. [Google Scholar] [CrossRef]
- Kim, C.; Wang, S.; Bae, K.R.; Moon, H. Reliability-based topology optimization with uncertainties. J. Mech. Sci. Technol. 2006, 20, 494–504. [Google Scholar] [CrossRef]
- Elishakoff, I.; Colombi, P. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters. Comput. Methods Appl. Mech. Eng. 1993, 104, 187–209. [Google Scholar] [CrossRef]
- Moens, D.; Hanss, M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elem. Anal. Des. 2011, 47, 4–16. [Google Scholar] [CrossRef]
- Mostafa, M.N.; Morteza, T. Robust data envelopment analysis with Monte Carlo simulation model for optimization the energy consumption in agriculture. Energy Sources Part A RecoveryUtil. Environ. Eff. 2020, 1–15. [Google Scholar] [CrossRef]
- Abyani, M.; Bahaari, R.M. A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube Sampling methods. Int. J. Press. Vessel. Pip. 2020, 181, 104079. [Google Scholar] [CrossRef]
- Luo, C.; Zhu, S.-P.; Keshtegar, B.; Macek, W.; Branco, R.; Meng, D. Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy. Comput. Methods Appl. Mech. Eng. 2024, 423, 116863. [Google Scholar] [CrossRef]
- Song, L.-K.; Li, X.-Q.; Zhu, S.-P.; Choy, Y.-S. Cascade ensemble learning for multi-level reliability evaluation. Aerosp. Sci. Technol. 2024, 148, 109101. [Google Scholar] [CrossRef]
- Xian, J.-H.; Wang, Z.-Q. Relaxation-based importance sampling for structural reliability analysis. Struct. Saf. 2024, 106, 102393. [Google Scholar] [CrossRef]
- Moller, B.; Graf, W.; Beer, M. Fuzzy structural analysis using α-level optimization. Comp. Mech. 2000, 26, 547–565. [Google Scholar] [CrossRef]
- Nie, X.; Li, H. A direct-integration-based structural reliability analysis method using non-probabilistic convex model. J. Mech. Sci. Technol. 2018, 32, 5063–5068. [Google Scholar] [CrossRef]
- Jiang, G.; Gao, L. Reliability analysis of martial arts arena robot systems based on fuzzy set theory. J. Mech. Sci. Technol. 2018, 32, 5069–5077. [Google Scholar] [CrossRef]
- Tang, Z.C.; Lu, Z.Z.; Hu, J.X. An efficient approach for design optimization of structures involving fuzzy variables. Fuzzy Sets Syst. 2014, 255, 52–73. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, C.; Li, G.; Huang, X. Topology optimization of structures consideringlocal material uncertainties in additive manufacturing. Comput. Methods Appl. Mech. Engrg. 2020, 360, 112786. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Lv, T. Additive manufacturing-oriented concurrent robust topology optimization considering size control. Int. J. Mech. Sci. 2023, 250, 108269. [Google Scholar] [CrossRef]
- Jansen, M.; Lombaert, G.; Schevenels, M.; Sigmund, O. Topology optimization of fail-safe structures using a simplified local damage model. Struct. Multidiscip. Optim. 2014, 49, 657–666. [Google Scholar] [CrossRef]
- Martinez-Frutos, J.; Ortigosa, R. Risk-averse approach for topology optimization of fail-safe structures using the level-set method. Comp. Mech. 2021, 68, 1039–1061. [Google Scholar] [CrossRef]
- Hederberg, H.; Thore, C.J. Topology optimization for fail-safe designs using moving morphable components as a representation of damage. Struct. Multidiscip. Optim. 2021, 64, 2307–2321. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Hoang, V.-N.; Meng, Z.; Long, K.; Wang, Y. Reliability-based topology optimization of fail-safe structures using moving morphable bars, CMES Comput. Model. Eng. Sci. 2023, 136, 3173–3195. [Google Scholar]
- Cai, J.; Huang, L.; Wu, H.; Yin, L. Topology optimization of truss structure under load uncertainty with gradient-free proportional topology optimization method. Structures 2023, 58, 105377. [Google Scholar] [CrossRef]
- Chanu, S.; Wattanathorn, A.; Senpong, M.; Sleesongsom, S. Reliability analysis in design of mechanical components. AIP Conf. Proc. 2023, 2601, 020030. [Google Scholar]
- Suratemeekul, N.; Kumkam, N.; Sleesongsom, S. Uncertainty Quantification Code Written in MATLAB. Commun. Comput. Inf. Sci. 2024, in press.
- Mischke, C. A method of relating factor of safety and reliability. J. Eng. Ind. 1970, 92, 537–541. [Google Scholar] [CrossRef]
- Wu, Y.T.; Shin, Y.; Sues, R.; Cesare, M. Safety-factor based approach for probability based design optimization. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar]
- Qu, X.; Haftka, R.T. Reliability-based Design Optimization Using Probabilistic Sufficiency Factor. Struct. Multidisc. Optim. 2004, 27, 314–325. [Google Scholar] [CrossRef]
- Yin, J.; Du, X. A Safety Factor Method for Reliability-Based Component Design. J. Mech. Eng. 2021, 143, 091705. [Google Scholar] [CrossRef]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef]
- Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin hypercube sampling for structural reliability analysis. Struct. Saf. 2003, 25, 47–68. [Google Scholar] [CrossRef]
- Remouchamps, A.; Bruyneel, M.; Fleury, C.; Grihon, S. Application of a Bi-Level Scheme Including Topology Optimization to the Design of an Aircraft Pylon. Struct. Multidisc. Optim. 2011, 44, 739–750. [Google Scholar] [CrossRef]
- Coniglio, S.; Gogu, C.; Amargier, R.; Morlier, J. Engine pylon topology optimization framework based on performance and stress criteria. AIAA J. 2019, 57, 5514–5526. [Google Scholar] [CrossRef]
- Xing, Y.; Tong, Y. Accelerating reliability-based topology optimization via gradient online learning and prediction. Aerosp. Sci. Technol. 2024, 145, 108836. [Google Scholar] [CrossRef]
Initializations assign random variable information: random sampling number (N), mean (μ), and standard deviation (σ) of each random variable. Generate random variables: 1. Generate matrix P and R, where matrix P of size N × k is constructed, with k columns representing a random permutation of the number 1 to N, while R is an independent random number matrix of size N × k, with values between 0 and 1. 2. Perform matrix calculation, . 3. Generate a vector of random variables by performing the inverse of CDF by using: xij = FXj−1(sij), j = 1, 2, … ,k where FXj−1 is the inverse of CDF of variable j, and CDF is the cumulative distribution function. |
Type | N | Performances | Structure & vms |
---|---|---|---|
PTOs | - | It. No.: 294 Vol frac.: 0.239 Max stress: 1.535 Comp.: 401.305 Time: 32.743 | |
PTOr | 20 | It. No.: 51 Vol. frac.: 0.454 Max. stress: 1.329 Comp.: 214.392 Time: 76.099 pf = 0 | |
102 | It. No.: 51.0 Vol. frac.: 0.454 Max. stress: 1.281 Comp.: 208.452 Time: 371.389 pf =0 | ||
103 | It. No.: 51.0 Vol. frac.: 0.454 Max. stress: 1.316 Comp.: 208.623 Time: 1456.545 pf =0 |
Type | N | Performances | Structure and vms |
---|---|---|---|
PTOs | - | It. No.: 113.0 Vol frac.: 0.610 Max stress: 0.702 Comp.: 152.864 Time: 22.766 | |
PTOr | 20 | It. No.: 134.0 Vol. frac.: 0.631 Max. stress: 0.694 Comp.: 150.822 Time: 181.405 pf = 0.05 | |
102 | It. No.: 143.0 Vol. frac.: 0.640 Max. stress: 0.657 Comp.: 145.082 Time: 814.247 pf = 0.02 | ||
103 | It. No.: 144.0 Vol. frac.: 0.641 Max. stress: 0.675 Comp.: 145.121 Time: 3839.064 pf =0.017 |
Type | N | Performances | Structure and vms |
---|---|---|---|
PTOs | - | It. No.: 294.0 Vol frac.: 0.239 Max stress: 1.535 Comp.: 401.305 Time: 54.582 | |
PTOr | 20 | It. No.: 134.0 Vol. frac.: 0.454 Max. stress: 1.329 Comp.: 214.392 Time: 81.440 pf = 0 | |
102 | It. No.: 51.0 Vol. frac.: 0.454 Max. stress: 1.281 Comp.: 208.452 Time: 367.028 pf = 0 | ||
103 | It. No.: 51.0 Vol. frac.: 0.454 Max. stress: 1.316 Comp.: 208.623 Time: 1460.969 pf = 0 |
Type | N | Performances | Structure & vms |
---|---|---|---|
PTOs | - | It. No.: 315.0 Vol frac.: 0.216 Max stress: 1.402 Comp.: 434.284 Time: 75.220 | |
PTOr | 20 | It. No.: 133.0 Vol. frac.: 0.630 Max. stress: 1.381 Comp.: 163.518 Time: 174.556 pf = 0.05 | |
102 | It. No.: 191.0 Vol. frac.: 0.688 Max. stress: 1.316 Comp: 150.197 Time: 1009.294 pf = 0.02 | ||
103 | It. No.: 202.0 Vol. frac.: 0.693 Max. stress: 1.351 Comp.: 149.524 Time: 5235.709 pf = 0.015 |
Problem | N | Performances | Structure |
---|---|---|---|
CTB with middle right load | 104 | It. No.: 144 Vol. frac.: 0.641 Max. stress: 0.668 Comp.: 144.413 Time: 88,482.283 pf = 0.016 | |
MBB beam | 104 | It. No.: 192 Vol. frac.: 0.689 Max. stress: 1.340 Comp.: 149.513 Time: 106,487.258 pf = 0.014 |
Type | N | Performances | Structure |
---|---|---|---|
PTOs | - | It. No.: 71.0 Vol. frac.: 0.568 Max. stress: 0.601 Comp.: 13.601 Time: 11.571 | |
Ansys | - | It. No.: 25 Vol. frac.: 0.680 Max. stress: 1 Comp.: 28.351 Time: 22.931 | |
PTOr | 102 | It. No.: 123.0 Vol. frac.: 0.620 Max. stress: 0.565 Comp.: 12.253 Time: 210.566 pf = 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumkam, N.; Sleesongsom, S. Reliability-Based Topology Optimization with a Proportional Topology for Reliability. Aerospace 2024, 11, 435. https://doi.org/10.3390/aerospace11060435
Kumkam N, Sleesongsom S. Reliability-Based Topology Optimization with a Proportional Topology for Reliability. Aerospace. 2024; 11(6):435. https://doi.org/10.3390/aerospace11060435
Chicago/Turabian StyleKumkam, Noppawit, and Suwin Sleesongsom. 2024. "Reliability-Based Topology Optimization with a Proportional Topology for Reliability" Aerospace 11, no. 6: 435. https://doi.org/10.3390/aerospace11060435
APA StyleKumkam, N., & Sleesongsom, S. (2024). Reliability-Based Topology Optimization with a Proportional Topology for Reliability. Aerospace, 11(6), 435. https://doi.org/10.3390/aerospace11060435