Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate
Abstract
:1. Introduction
2. Closed Bomb Test
3. Compressible Multifluid Formulation for Granular Combustion
4. Numerical Schemes
4.1. HLLC
4.2. AUSM+-up
4.3. HLLC-AUSM
5. Computational Framework
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
mass generated | |
a | speed of sound |
D | drag |
E | total energy |
E | total flux vector |
e | internal energy |
F | axial flux vector |
G | radial flux vector |
Hc | heat of combustion |
N | number density per unit volume |
P | pressure |
Q | heat transfer |
q | velocity vector |
r | radial direction |
S | source term vector |
S | wave speed |
t | time |
T | temperature |
U | conserved variables vector |
u | axial velocity |
v | radial velocity |
x | axial direction |
Y | local mass fraction |
Greek | |
volume fraction | |
µ | pressure relaxation |
γ | specific heat ratio |
ξ | gaseous combustion products mass fraction |
τ | pressure relaxation time |
Ω | volume |
density | |
Subscripts | |
g | gas phase |
I | interface |
i | computational cell |
k | gas/solid phase |
l/L | left |
p | solid phase |
q | condensed phase combustion products |
r/R | right |
Abbreviations | |
AUSM | advection upstream splitting method |
BPN | boron potassium nitrate |
CEA | chemical equilibrium compositions and applications |
HLLC | Harten-Lax-van Leer-Contact |
References
- Kuo, K.K. Principles of Combustion, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 1986; pp. 601–614. [Google Scholar]
- Krier, H.; Gokhale, S. Predictions of vigorous ignition dynamics for a packed bed of solid propellant grains. Int. J. Heat Mass Transf. 1976, 8, 915–923. [Google Scholar] [CrossRef]
- Kuo, K.K.; Vichnevetsky, R.; Summerfield, M. Theory of flame front propagation in porous propellant charges under confinement. AIAA J. 1973, 11, 444–451. [Google Scholar] [CrossRef]
- Powers, J.; Stewart, D.; Krier, H. Theory of two-phase detonation—Part i: Modeling. Combust. Flame 1990, 80, 264–279. [Google Scholar] [CrossRef]
- Powers, J.M.; Gonthier, K.A. Pyrotechnic modelling for the NSI driven pin puller. Intern. Fluid Mech. Div. 1992. [Google Scholar]
- Gonthier, K.A.; Powers, J.M. Formulations, predictions, and sensitivity analysis of a pyrotechnically actuated pin puller model. J. Propuls. Power 1994, 10, 501–507. [Google Scholar] [CrossRef]
- Bdzil, J.; Menikoff, R.; Son, S.; Kapila, A.; Stewart, D.S. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination 46 of modeling issues. Phys. Fluids 1999, 11, 378–402. [Google Scholar] [CrossRef]
- Saurel, R.; Le Martelot, S.; Tosello, R.; Lapebie, E. Symmetric model of compressible granular mixtures with permeable interfaces. Phys. Fluids 2014, 26, 123304. [Google Scholar] [CrossRef]
- Saurel, R.; Chinnayya, A.; Carmouze, Q. Modelling compressible dense and dilute two-phase flows. Phys. Fluids 2017, 29, 063301. [Google Scholar] [CrossRef]
- Davis, T.; Kuo, K. Experimental study of the combustion processes in granular propellant beds. J. Spacecr. Rocket. 1979, 16, 203–209. [Google Scholar] [CrossRef]
- Han, D.-H.; Sung, H.-G.; Ryu, B.-T. Numerical simulation for the combustion of a zirconium/potassium perchlorate explosive inside a closed vessel. Propellants Explos. Pyrotech. 2017, 42, 1168–1178. [Google Scholar] [CrossRef]
- Ulas, A.; Risha, G.A.; Kuo, K.K. An investigation of the performance of a boron/potassium-nitrate based pyrotechnic igniter. Propellants Explos. Pyrotech. Int. J. Deal. Sci. Technol. Asp. Energ. Mater. 2006, 79, 311–317. [Google Scholar] [CrossRef]
- Yeom, G.S.; Chang, K.S. A modified HLLC-type Riemann solver for the compressible six-equation two-fluid model. Comput. Fluids 2013, 76, 86–104. [Google Scholar] [CrossRef]
- Furfaro, D.; Saurel, R. A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. Comput. Fluids 2015, 111, 159–178. [Google Scholar] [CrossRef]
- Kitamura, K.; Liou, M.S.; Chang, C.H. Extension and comparative study of AUSM-family schemes for compressible multiphase flow simulations. Commun. Comput. Phys. 2014, 16, 632–674. [Google Scholar] [CrossRef]
- Houim, R.W.; Oran, E.S. A technique for computing dense granular compressible flows with shock waves. arXiv 2013, arXiv:1312.1290. [Google Scholar]
- Houim, R.W.; Oran, E.S. A multiphase model for compressible granular–gaseous flows: Formulation and initial tests. J. Fluid Mech. 2016, 789, 166–220. [Google Scholar] [CrossRef]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA Reference Publication 1311; NASA Lewis Research Center: Cleveland, OH, USA, 1994. [Google Scholar]
- Yeom, G.S.; Chang, K.S. Dissipation of shock wave in a gas-droplet mixture by droplet fragmentation. Int. J. Heat Mass Transf. 2012, 55, 941–957. [Google Scholar] [CrossRef]
- Isherwood, L.; Grant, Z.J.; Gottlieb, S. Strong stability preserving integrating factor Runge–Kutta methods. SIAM J. Numer. Anal. 2018, 56, 3276–3307. [Google Scholar] [CrossRef]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 129–133. [Google Scholar]
- Michalak, K.; Ollivier-Gooch, C. Differentiability of slope limiters on unstructured grids. In Proceedings of the Fourteenth Annual Conference of the Computational Fluid Dynamics Society of Canada, Kingston, Canada, 16–18 July 2006. [Google Scholar]
- Batten, P.; Clarke, N.; Lambert, C.; Causon, D.M. On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 1997, 18, 1553–1570. [Google Scholar] [CrossRef]
- Liou, M.S. A sequel to AUSM, Part II: AUSM+-up for all speeds. J. Comput. Phys. 2006, 214, 137–170. [Google Scholar] [CrossRef]
- Kim, B.; Jang, S.-G.; Yoh, J.J. A full-scale hydrodynamic simulation of energetic component system. Comput. Fluids 2017, 156, 368–383. [Google Scholar] [CrossRef]
- Wang, L.; Feng, C.; Han, C. Experimental study on boron-potassium nitrate initiated by shock. J. Propuls. Power 1998, 14, 416–420. [Google Scholar] [CrossRef]
- Ding, D. A study on the ignition of boron/potassium nitrate mixture. Sci. Technol. Energ. Mater. 2006, 67, 23. [Google Scholar]
- Wu, J.; Liu, J.; Yang, L.; Li, Y.; Chen, L. Numerical simulation of the metal bridge foil explosion plasma ignition of B/KNO3. Phys. Plasmas 2020, 27, 033509. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Make and model number | Kulite; EWCTV 312(M) |
Pressure range | 140 bar |
Operating temperature range | 297 to 1366 K |
Residual unbalance | 0.5 V ± 100 mV |
Uncertainty in pressure measurement | 0.1% of full scale (FS) |
Parameters | Value | Source |
---|---|---|
Density (kg/m3) | 2000 | measured |
Diameter (µm) | 897 | measured |
Volume of one granule | 0.3779 | calculated |
Surface area–volume relation | 4.836Vol0.67 | sphere correlation |
Burn rate law (mm/s; P in bar) | 19.75P0.19 | measured |
Speed of sound (m/s) | 2463 | Kim et al. [25] |
BPN specific heat ratio | 2.2023 | computed from Wang et al. [26] |
(GPa) | 6.075 | computed from Wang et al. [26] |
Initial solid volume fraction | 0.275 | calculated |
Length occupied in the canister (mm) | 29 | measured |
Initial pressure (bar) | 1 | ambient condition |
Initial temperature (K) | 308.15 | ambient condition |
Ignition temperature (K) | 834 | Dayu [27] |
Flame temperature (K) | 3011.5 | CEA analysis [18] |
Heat of combustion (kJ/kg) | 7773.2 | Wu et al. [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizabeth, A.R.; Sarma, S.; Jayachandran, T.; Ramakrishna, P.A.; Borthakur, M. Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate. Aerospace 2024, 11, 251. https://doi.org/10.3390/aerospace11040251
Elizabeth AR, Sarma S, Jayachandran T, Ramakrishna PA, Borthakur M. Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate. Aerospace. 2024; 11(4):251. https://doi.org/10.3390/aerospace11040251
Chicago/Turabian StyleElizabeth, Annie Rose, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna, and Mondeep Borthakur. 2024. "Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate" Aerospace 11, no. 4: 251. https://doi.org/10.3390/aerospace11040251
APA StyleElizabeth, A. R., Sarma, S., Jayachandran, T., Ramakrishna, P. A., & Borthakur, M. (2024). Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate. Aerospace, 11(4), 251. https://doi.org/10.3390/aerospace11040251