Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density
Abstract
:1. Introduction
2. Homogenised Microstructures Topology with Smooth Boundaries
2.1. Setting of Grid Point Density
2.2. Homogenisation Theory
2.3. Optimisation Model
2.4. Evolution of Smooth Boundaries
3. 2D Topology Optimisation with Maximised Bulk Modulus
3.1. Numerical Results
3.2. In-Plane Elastic Properties of 2D Topological In-Concave Curved-Edge Structures
3.2.1. Equivalent Modulus of Elasticity
3.2.2. Equivalent Poisson’s Ratio
3.2.3. Equivalent Shear Modulus
4. 3D Topology Optimisation and Experimental Analysis under Volume Modulus Maximisation
4.1. Numerical Results
4.2. Compressive Mechanical Properties of 3D Internally Concave Surface Structures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghobadian, A.; Talavera, I.; Bhattacharya, A.; Kumar, V.; Garza-Reyes, J.A.; O’Regan, N. Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. Int. J. Prod. Econ. 2020, 219, 457–468. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Bodaghi, M.; Hamzehei, R.; Parr, L.; Fard, M.; Rolfe, B. 3D-printed programmable mechanical metamaterials for vibration isolation and buckling control. Sustainability 2022, 14, 6831. [Google Scholar] [CrossRef]
- Hamzehei, R.; Zolfagharian, A.; Dariushi, S.; Bodaghi, M. 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance. Smart Mater. Struct. 2022, 31, 035001. [Google Scholar] [CrossRef]
- Namvar, N.; Zolfagharian, A.; Vakili-Tahami, F.; Bodaghi, M. Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing. Smart Mater. Struct. 2022, 31, 055021. [Google Scholar] [CrossRef]
- Baena, J.C.; Wang, C.; Fu, Y.; Kabir, I.I.; Yuen, A.C.Y.; Peng, Z.; Yeoh, G.H. A new fabrication method of designed metamaterial based on a 3D-printed structure for underwater sound absorption applications. Appl. Acoust. 2023, 203, 109221. [Google Scholar] [CrossRef]
- Sigmund, O.; Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Zuo, W.; Saitou, K. Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 2017, 55, 477–491. [Google Scholar] [CrossRef]
- Xie, Y.; Steven, G. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Yang, X.; Xie, Y.; Steven, G.P.; Querin, O. Bidirectional evolutionary method for stiffness optimization. AIAA J. 1999, 37, 1483–1488. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 2007, 43, 1039–1049. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.-M. A level-set method for shape optimization. Comptes Rendus Math. 2002, 334, 1125–1130. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Du, J.; Olhoff, N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multidiscip. Optim. 2007, 34, 91–110. [Google Scholar] [CrossRef]
- Yoon, G.H. Structural topology optimization for frequency response problem using model reduction schemes. Comput. Methods Appl. Mech. Eng. 2010, 199, 1744–1763. [Google Scholar] [CrossRef]
- Kiziltas, G.; Kikuchi, N.; Volakis, J.L.; Halloran, J. Topology optimization of dielectric substrates for filters and antennas using SIMP. Arch. Comput. Methods Eng. 2004, 11, 355–388. [Google Scholar] [CrossRef]
- Choi, J.S.; Yoo, J. Simultaneous structural topology optimization of electromagnetic sources and ferromagnetic materials. Comput. Methods Appl. Mech. Eng. 2009, 198, 2111–2121. [Google Scholar] [CrossRef]
- Du, J.; Olhoff, N. Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct. Multidiscip. Optim. 2007, 33, 305–321. [Google Scholar] [CrossRef]
- Yoon, G.H. Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J. Sound Vib. 2013, 332, 1172–1187. [Google Scholar] [CrossRef]
- Yoon, G.H.; Jensen, J.S.; Sigmund, O. Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation. Int. J. Numer. Methods Eng. 2007, 70, 1049–1075. [Google Scholar] [CrossRef]
- Zheng, B.; Chang, C.-J.; Gea, H.C. Topology optimization of energy harvesting devices using piezoelectric materials. Struct. Multidiscip. Optim. 2009, 38, 17–23. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.; Ma, P.; Kim, Y. Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput. Methods Appl. Mech. Eng. 2010, 199, 3153–3168. [Google Scholar] [CrossRef]
- Ghabraie, K.; Chan, R.; Huang, X.; Xie, Y.M. Shape optimization of metallic yielding devices for passive mitigation of seismic energy. Eng. Struct. 2010, 32, 2258–2267. [Google Scholar] [CrossRef]
- Liu, D.; Chiu, L.; Davies, C.; Yan, W. A post-processing method to remove stress singularity and minimize local stress concentration for topology optimized designs. Adv. Eng. Softw. 2020, 145, 102815. [Google Scholar] [CrossRef]
- Costa, G.; Montemurro, M.; Pailhès, J. A 2D topology optimisation algorithmin NURBS framework with geometric constraints. Int. J. Mech. Mater. Des. 2018, 14, 669–696. [Google Scholar] [CrossRef]
- Costa, G.; Montemurro, M.; Pailhès, J. NURBS hypersurfaces for 3D topologyoptimisation problems. Mech. Adv. Mater. Struct. 2021, 28, 665–684. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, Y.; Zheng, S. A NURBS-based finite cell method for structural topology optimization under geometric constraints. Comput. Aided Geom. Des. 2019, 72, 1–18. [Google Scholar] [CrossRef]
- Qian, X. Topology optimization in B-spline space. Comput. Methods Appl. Mech. Eng. 2013, 265, 15–35. [Google Scholar] [CrossRef]
- Da, D.; Xia, L.; Li, G.; Huang, X. Evolutionary topology optimization ofcontinuum structures with smooth boundary representation. Struct. Multidiscip. Optim. 2018, 57, 2143–2159. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Rolfe, B.; Chiu, L.N.S.; Wang, Y.; Huang, X.; Ghabraie, K. SEMDOT: Smooth-edged material distribution for optimizing topology algorithm. Adv. Eng. Softw. 2020, 150, 102921. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Rolfe, B.; Chiu, L.N.; Wang, Y.; Huang, X.; Ghabraie, K. Smooth topological design of 3D continuum structures using elemental volume fractions. Comput. Struct. 2020, 231, 106213. [Google Scholar] [CrossRef]
- Ullah, B.; Trevelyan, J.; Matthews, P.C. Structural optimisation based on theboundary element and level set methods. Comput. Struct. 2014, 137, 14–30. [Google Scholar] [CrossRef]
- Ullah, B.; Trevelyan, J.; Islam, S.U. A boundary element and level set based bi-directional evolutionary structural optimisation with a volume constraint. Eng. Anal. Bound. Elem. 2017, 80, 152–161. [Google Scholar] [CrossRef]
- Du, Y.; Li, H.; Luo, Z.; Tian, Q. Topological design optimization of lattice structuresto maximize shear stiffness. Adv. Eng. Softw. 2017, 112, 211–221. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Lu, X.; Liao, Z.; Qu, J. Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int. J. Mech. Sci. 2020, 179, 105638. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural designusing a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Huang, X.; Radman, A.; Xie, Y. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 2011, 50, 1861–1870. [Google Scholar] [CrossRef]
- Ma, C.; Lei, H.; Liang, J.; Wu, W.; Wang, T.; Fang, D. Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Mater. Des. 2018, 158, 198–212. [Google Scholar] [CrossRef]
- Liang, X.; Shan, J.; Zhou, X.; Li, S.; Yu, W.; Liu, Z.; Wen, Y.; Liang, B.; Li, H. Active design of chiral cell structures that undergo complex deformation under uniaxial loads. Mater. Des. 2022, 217, 110649. [Google Scholar] [CrossRef]
- Ling, B.; Wei, K.; Qu, Z.; Fang, D. Design and analysis for large magnitudes of programmable Poisson’s ratio in a series of lightweight cylindrical metastructures. Int. J. Mech. Sci. 2021, 195, 106220. [Google Scholar] [CrossRef]
- Yang, H.; Ma, L. Design and characterization of axisymmetric auxetic metamaterials. Compos. Struct. 2020, 249, 112560. [Google Scholar] [CrossRef]
- Yu, F.; Huo, Y.; Ding, Q.; Wang, C.; Yao, J.; He, Z.; Sun, Y.; Gao, H.; Sun, A. Structural Design and Band Gap Properties of 3D Star-Shaped Single-Phase Metamaterials. J. Vib. Eng. Technol. 2022, 10, 863–871. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Alderson, A.; Evans, K.E. On the potential of connected stars as auxetic systems. Mol. Simul. 2005, 31, 925–935. [Google Scholar] [CrossRef]
- Usta, F.; Türkmen, H.S.; Scarpa, F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Struct. 2021, 163, 107738. [Google Scholar] [CrossRef]
- Yao, J.; Sun, R.; Scarpa, F.; Remillat, C.; Gao, Y.; Su, Y. Two-dimensional graded metamaterials with auxetic rectangular perforations. Compos. Struct. 2021, 261, 113313. [Google Scholar] [CrossRef]
- Alderson, A.; Alderson, K.; Attard, D.; Evans, K.E.; Gatt, R.; Grima, J.N.; Miller, W.; Ravirala, N.; Smith, C.W.; Zied, K. Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 2010, 70, 1042–1048. [Google Scholar] [CrossRef]
- Lira, C.; Innocenti, P.; Scarpa, F. Transverse elastic shear of auxetic multi re-entrant honeycombs. Compos. Struct. 2009, 90, 314–322. [Google Scholar] [CrossRef]
- Harkati, E.; Daoudi, N.; Bezazi, A.; Haddad, A.; Scarpa, F. In-plane elasticity of a multi re-entrant auxetic honeycomb. Compos. Struct. 2017, 180, 130–139. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Ren, X.; Han, D.; Jiang, W.; Zhang, X.G.; Luo, H.C.; Xie, Y.M. Design and mechanical characteristics of auxetic metamaterial with tunable stiffness. Int. J. Mech. Sci. 2022, 223, 107286. [Google Scholar] [CrossRef]
- Liu, T.; Guessasma, S.; Zhu, J.; Zhang, W.; Belhabib, S. Functionally graded materials from topology optimisation and stereolithography. Eur. Polym. J. 2018, 108, 199–211. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Zhang, D.Z.; Zhai, W. Design, mechanical properties and optimization of lattice structures with hollow prismatic struts. Int. J. Mech. Sci. 2023, 238, 107842. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Zhang, D.Z.; Zhai, W. TPMS-based interpenetrating lattice structures: Design, mechanical properties and multiscale optimization. Int. J. Mech. Sci. 2023, 244, 108092. [Google Scholar] [CrossRef]
- Robbins, J.; Owen, S.; Clark, B.; Voth, T. An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing. Addit. Manuf. 2016, 12, 296–304. [Google Scholar] [CrossRef]
- Sofiane, B.; Sofiane, G. Compression performance of hollow structures: From topology optimisation to design 3D printing. Int. J. Mech. Sci. 2017, 133, 728–739. [Google Scholar]
- Agrawal, G.; Gupta, A.; Chowdhury, R.; Chakrabarti, A. Robust topology optimization of negative Poisson’s ratio metamaterials under material uncertainty. Finite Elem. Anal. Des. 2022, 198, 103649. [Google Scholar] [CrossRef]
- Dijk, N.; Maute, K.; Langelaar, M.; Keulen, F. Level-set methods forstructural topology optimization: A review. Struct. Multidiscip. Optim. 2013, 48, 437–772. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhang, J.; Yuan, J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 2016, 310, 711–748. [Google Scholar] [CrossRef]
- Xia, L.; Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct. Multidiscip. Optim. 2015, 52, 1229–1241. [Google Scholar] [CrossRef]
- Saurabh, S.; Gupta, A.; Chowdhury, R. Impact of parametric variation to achieve extreme mechanical metamaterials through topology optimization. Compos. Struct. 2023, 326, 117611. [Google Scholar] [CrossRef]
- Gao, J.; Li, H.; Luo, Z.; Gao, L.; Li, P. Topology optimization of micro-structured materials featured with the specific mechanical properties. Int. J. Comput. Methods 2019, 17, 1850144. [Google Scholar] [CrossRef]
- Kitamura, K. Shape Memory Properties of Ti-Ni Shape Memory Alloy/Shape Memory Polymer Composites Using Additive Manufacturing. Material. Sci. Forum. 2021, 1016, 697–701. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Rowshan, R.; Al-Rub, R.K. A Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials. Addit. Manuf. 2018, 19, 167–183. [Google Scholar] [CrossRef]
Graphical | Algorithm | Iterations |
---|---|---|
SIMP with homogenisation | 150 [58] | |
SIMP with strain energy-based homogenisation method | 140 [59] | |
level set method | 98 [60] | |
Grid point density topology | 104 |
Volume Fraction | Topology Optimisation Model | 3D Microstructure | 3D Surfaces of Elastics Modulus | |
---|---|---|---|---|
30% | SIMP | |||
Grid point density | ||||
40% | SIMP | |||
Grid point density | ||||
50% | SIMP | |||
Grid point density |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Tao, C.; Liang, X.; Liu, Z.; Li, H. Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density. Aerospace 2024, 11, 145. https://doi.org/10.3390/aerospace11020145
Zhou X, Tao C, Liang X, Liu Z, Li H. Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density. Aerospace. 2024; 11(2):145. https://doi.org/10.3390/aerospace11020145
Chicago/Turabian StyleZhou, Xin, Chenglin Tao, Xi Liang, Zeliang Liu, and Huijian Li. 2024. "Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density" Aerospace 11, no. 2: 145. https://doi.org/10.3390/aerospace11020145
APA StyleZhou, X., Tao, C., Liang, X., Liu, Z., & Li, H. (2024). Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density. Aerospace, 11(2), 145. https://doi.org/10.3390/aerospace11020145