Study of Paired Approach Wake Separation Based on Crosswinds
Abstract
:1. Introduction
2. Wake Vortex Model and Wake Vortex Dissipation Model
2.1. Wake Vortex Model
2.2. Wake Vortex Dissipation Model
3. Hazard Zones for Wake Encounter
4. Spreading and Movement of Wake Hazard Zones
4.1. Size of the Wake Hazard Zones
4.2. Turbulence-Induced Spreading of Hazard Zone
4.3. Hazard Zone Movements Due to Wind and Ground Effects
5. Experimental Results and Analysis
6. Conclusions
- (1)
- The interference of the nonlinear velocity field on the wake aircraft was calculated by the strip method. The influences of crosswinds, turbulence, and ground effects were integrated to analyze the changes in the hazard zone’s boundary from the wake diffusion perspective. The hazard zone was further divided into areas with different positional distributions and roll directions. The changes in the width of the hazard zone were further refined, and a prediction model for developing the boundary of the hazard zone was constructed.
- (2)
- The higher the turbulence intensity, the higher the hazard zone spreading rate, and the smaller the end time . In a breezeless environment, the lower the turbulence intensity, the greater the width of the maximum hazard zone. When the crosswind speed is adequate, the maximum hazard zone width will be smaller at lower turbulence intensity. The crosswind speed cannot be fully transferred to the displacement of the wake vortex due to the velocity field of the wake. Furthermore, the crosswind inhibits the upwind vortex motion more than it promotes the downwind vortex motion, reducing the width of the maximum hazard zone. For the normal paired approach (PA), the crosswinds are more effective in reducing the width of the maximum hazard zone.
- (3)
- Regarding the combination of preceding and following aircraft calculated in this paper, the PA procedure without wake separation can be implemented when the favorable crosswind reaches 2.02 m/s. Then, the off-angle PA can accommodate more unfavorable side winds. The off-angle PA promotes a larger percentage of time to implement a no-wake hazard approach, enhancing the runway capacity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breitsamter, C. Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 2011, 47, 89–134. [Google Scholar] [CrossRef]
- Hallock, J.N.; Holzäepfel, F. A review of recent wake vortex research for increasing airport capacity. Prog. Aerosp. Sci. 2018, 98, 27–36. [Google Scholar] [CrossRef]
- Holzäpfel, F. Probabilistic two-phase wake vortex decay and transport model. J. Aircr. 2003, 40, 323–331. [Google Scholar] [CrossRef]
- Crow, S.C. Stability theory for a pair of trailing vortices. AIAA J. 1970, 8, 2172–2179. [Google Scholar] [CrossRef]
- Wartha, N.; Stephan, A.; Holzäpfel, F.; Rotshteyn, G. Characterizing aircraft wake vortex position and strength using LiDAR measurements processed with artificial neural networks. Opt. Express 2022, 30, 13197–13225. [Google Scholar] [CrossRef] [PubMed]
- Holzäpfel, F.; Kladetzke, J. Assessment of wake-vortex encounter probabilities for crosswind departure scenarios. J. Aircr. 2011, 48, 812–822. [Google Scholar] [CrossRef]
- Hammer, J. Case study of paired approach procedure to closely spaced parallel runways. Air Traffic Control Q. 2000, 8, 223–252. [Google Scholar] [CrossRef]
- Eftekari, R.R.; Hammer, J.B.; Havens, D.A.; Mundra, A.D. Feasibility analyses for paired approach procedures for closely spaced parallel runways. In Proceedings of the 2011 Integrated Communications, Navigation, and Surveillance Conference Proceedings, Herndon, VA, USA, 10–12 May 2011; pp. I5-1–I5-14. [Google Scholar]
- Farrahi, A.H.; Verma, S.A.; Kozon, T.E. On the problem of pairing aircraft for closely spaced parallel approaches. IEEE Trans. Intell. Transp. Syst. 2016, 17, 631–643. [Google Scholar] [CrossRef]
- Leiden, K.; Miller, M.E.; Kaler, C. Paired approach flight demonstration results. In Proceedings of the 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 9–11 April 2019; pp. 1–16. [Google Scholar]
- Speijker, L.; Vidal, A.; Barbaresco, F.; Frech, M. ATC–wake: Integrated wake vortex safety and capacity system. J. Air Traffic Control 2007, 49, 17–32. [Google Scholar]
- Körner, S.; Holzäpfel, F. Assessment of the wake-vortex proximity to landing aircraft exploiting field measurements. J. Aircr. 2019, 56, 1250–1258. [Google Scholar] [CrossRef]
- Danielle, V.J.; Kahina, D.; Frédéric, B. Model for the calculation of the radar cross section of wake vortices of take–off and landing airplanes. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31 October–2 November 2012; pp. 349–352. [Google Scholar]
- Barbaresco, F.; Juge, P.; Kleinm, M.; Canal, D.; Ricci, Y.; Schneider, J. Wake vortex detection, prediction and decision support tools in SESAR program. In Proceedings of the 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), East Syracuse, NY, USA, 5–10 October 2013; pp. 6B1-1–6B1-15. [Google Scholar]
- Barbaresco, F.; Juge, P.; Klein, M.; Ricci, Y.; Schneider, J.Y.; Moneuse, J.F. Optimising runway throughput through wake vortex detection, prediction and decision support tools. In Proceedings of the 2011 Tyrrhenian International Workshop on Digital Communications—Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 12–14 September 2011; pp. 27–32. [Google Scholar]
- Tether, B.S.; Metcalfe, J.S. Investigating the processes of runway capacity creation at europe’s most congested airports. In Proceedings of the 5th European Business History Conference, Oslo, Norway, 31 August–1 September 2001; pp. 1–49. [Google Scholar]
- Domino, D.A.; Tuomey, D.; Stassen, H.P.; Mundra, A. Paired approaches to closely spaced runways: Results of pilot and ATC simulation. In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 5–9 October 2014; pp. 1–39. [Google Scholar]
- Zhang, J.D.; Zuo, Q.H.; Lin, M.D.; Huang, W.X.; Pan, W.J.; Cui, G.X. Evolution of vortices in the wake of an ARJ21 airplane: Application of the lift–drag model. Theor. Appl. Mech. Lett. 2020, 10, 419–428. [Google Scholar] [CrossRef]
- Gerz, T.; Holzäpfel, F.; Daracq, D. Commercial aircraft wake vortices. Prog. Aerosp. Sci. 2002, 38, 181–208. [Google Scholar] [CrossRef]
- Schwarz, C.; Hahn, K.U.; Fischenberg, D. Wake encounter severity assessment based on validated aerodynamic interaction models. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010; pp. 1–9. [Google Scholar]
- Sarpkaya, T. Decay of wake vortices of large aircraft. AIAA J. 1998, 36, 1671–1679. [Google Scholar] [CrossRef]
- Sarpkaya, T. New model for vortex decay in the atmosphere. J. Aircr. 2000, 37, 53–61. [Google Scholar] [CrossRef]
- Proctor, F.H.; Hamilton, D.W.; Han, J. Wake vortex transport and decay in ground effect: Vortex linking with the ground. In Proceedings of the 38th Aerospace Sciences Meeting, Reno, NV, USA, 10–13 January 2000; pp. 1–14. [Google Scholar]
- Proctor, F.H.; Hamilton, D.W. Evaluation of fast–time wake vortex prediction models. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 5–8 January 2009; pp. 1–10. [Google Scholar]
- Baren, G.V.; Treve, V.; Rooseleer, F.; Geest, P.; Heesbeen, B. Assessing the severity of wake encounters in various aircraft types in piloted flight simulations. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, National Harbor, MD, USA, 13–17 January 2014; p. 1084. [Google Scholar]
- Bieniek, D.; Luckner, R.; Visscher, I.D.; Winckelmans, G. Simulation methods for aircraft encounters with deformed wake vortices. J. Aircr. 2016, 53, 1581–1596. [Google Scholar] [CrossRef]
- Pan, W.; Yin, Z.; Luo, Y.; Wang, A.; Huang, Y. Dynamic Aircraft Wake Separation Based on Velocity Change. Aerospace 2022, 9, 633. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Xu, Y.; Jiang, Q.; Luo, Y. Approach and landing aircraft wake encounter risk based on reynolds–averaged Navier–Stokes numerical simulation. Int. J. Aerosp. Eng. 2022, 2022, 9126755. [Google Scholar] [CrossRef]
- Lin, M.; Cui, G.; Zhang, Z. Large eddy simulation of aircraft wake vortex with self–adaptive grid method. Appl. Math. Mech. 2016, 37, 1289–1304. [Google Scholar] [CrossRef]
- Vechtel, D.; Stephan, A.; Holzäpfel, F. Simulation study of severity and mitigation of wake–vortex encounters in ground proximity. J. Aircr. 2017, 54, 1802–1813. [Google Scholar] [CrossRef]
- Vechtel, D. Simulation study of wake encounters with straight and deformed vortices. Aeronaut. J. 2016, 120, 651–674. [Google Scholar] [CrossRef]
- Holzäpfel, F.; Tchipev, N.; Stephan, A. Wind impact on single vortices and counterrotating vortex pairs in ground proximity. Flow Turbul. Combust. 2016, 97, 829–848. [Google Scholar] [CrossRef]
- Pan, W.; Leng, Y.; Wu, T.; Xu, Y.; Zhang, X. Conv–wake: A lightweight framework for aircraft wake recognition. J. Sens. 2022, 2022, 3050507. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.Z.; Mou, M.; Wei, Z. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways. Chin. J. Aeronaut. 2019, 32, 463–476. [Google Scholar] [CrossRef]
Aircraft | ICAO RECAT | (m) | (m/s) | (m2) | (kg) | (m2/s) | (m) | (m) | (s) | (m/s) |
---|---|---|---|---|---|---|---|---|---|---|
A388 | J | 79.8 | 71.0 | 845 | 386,000 | 689.56 | 62.64 | 2.19 | 35.29 | 1.78 |
B744 | B | 64.9 | 74.6 | 542 | 285,800 | 604.88 | 50.97 | 1.78 | 26.99 | 1.89 |
A333 | B | 60.3 | 72.0 | 362 | 187,000 | 441.18 | 47.36 | 1.66 | 31.94 | 1.48 |
B763 | C | 47.6 | 72.0 | 283 | 148,000 | 442.61 | 37.36 | 1.31 | 19.82 | 1.89 |
Aircraft | ICAO RECAT | (m) | (m/s) | (m2) | (kg) |
---|---|---|---|---|---|
B738 | D | 34.3 | 72.0 | 125 | 66,400 |
E190 | E | 28.7 | 67.4 | 93 | 43,000 |
ARJ21 | F | 27.3 | 74.6 | 80 | 40,500 |
CRJ9 | F | 24.9 | 69.5 | 71 | 34,100 |
Preceding Aircraft | A388 | B744 | A333 | B763 | |||||
---|---|---|---|---|---|---|---|---|---|
Following Aircraft | |||||||||
B738 | 60.19 | 44.03 | 52.89 | 37.88 | 48.25 | 35.64 | 43.12 | 30.81 | |
ARJ21 | 55.67 | 41.68 | 48.51 | 35.57 | 44.19 | 33.31 | 39.14 | 28.41 | |
E190 | 58.08 | 42.81 | 50.78 | 36.61 | 46.10 | 34.12 | 41.07 | 29.31 | |
CRJ9 | 53.56 | 40.85 | 46.59 | 34.70 | 42.45 | 32.44 | 37.50 | 27.55 |
Following Aircraft | Preceding Aircraft | = 0.05, Critical Values of Favourable Crosswinds (m/s) | = 0.01, Critical Values of Favourable Crosswinds (m/s) |
---|---|---|---|
B738 | A388 | 1.93 | 1.82 |
ARJ21 | A388 | 1.95 | 1.78 |
E190 | A388 | 2.02 | 1.99 |
CRJ9 | A388 | 1.97 | 1.48 |
B738 | B744 | 0.91 | 1.18 |
ARJ21 | B744 | 0.98 | 1.15 |
E190 | B744 | 1.12 | 1.32 |
CRJ9 | B744 | 0.91 | 0.83 |
B738 | A333 | 0.25 | 0.71 |
ARJ21 | A333 | 0.32 | 0.85 |
E190 | A333 | 0.51 | 0.91 |
CRJ9 | A333 | 0.34 | 0.24 |
B738 | B763 | −3.65 | −0.1 |
ARJ21 | B763 | −3.2 | −0.06 |
E190 | B763 | −1.85 | 0.11 |
CRJ9 | B763 | −3.42 | −1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Jiang, Y.; Zhou, J.; Ye, W.; Zhang, Y. Study of Paired Approach Wake Separation Based on Crosswinds. Aerospace 2024, 11, 146. https://doi.org/10.3390/aerospace11020146
Pan W, Jiang Y, Zhou J, Ye W, Zhang Y. Study of Paired Approach Wake Separation Based on Crosswinds. Aerospace. 2024; 11(2):146. https://doi.org/10.3390/aerospace11020146
Chicago/Turabian StylePan, Weijun, Yanqiang Jiang, Junjie Zhou, Wei Ye, and Yuqin Zhang. 2024. "Study of Paired Approach Wake Separation Based on Crosswinds" Aerospace 11, no. 2: 146. https://doi.org/10.3390/aerospace11020146
APA StylePan, W., Jiang, Y., Zhou, J., Ye, W., & Zhang, Y. (2024). Study of Paired Approach Wake Separation Based on Crosswinds. Aerospace, 11(2), 146. https://doi.org/10.3390/aerospace11020146