Electrodynamic Attitude Stabilization of a Spacecraft in an Elliptical Orbit
Abstract
:1. Introduction
2. Problem Statement
3. Control Torques
4. The Earth’s Magnetic Field Induction
5. The Disturbing Torque
6. Compensation of the Disturbing Torque
7. Computer Modeling and Numerical Integration Results
- orbit parameters: eccentricity , orbital inclination , focal parameter ;
- spacecraft parameters: moments of inertia , , , total charge C;
- control parameters: , , , ;
- initial deviation: ;
- initial angular velocity components: .
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silani, E.; Lovera, M. Magnetic spacecraft attitude control: A survey and some new results. Control Eng. Pract. 2005, 13, 357–371. [Google Scholar] [CrossRef]
- Das, S.; Sinha, M.; Kumar, K.; Misra, A. Reconfigurable magnetic attitude control of Earth-pointing satellites. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2010, 224, 1309–1326. [Google Scholar] [CrossRef]
- Das, S.; Sinha, M.; Misra, A. Dynamic Neural Units for Adaptive Magnetic Attitude Control of a Satellite. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, ON, Canada, 2–5 August 2010; Volume 35. [Google Scholar] [CrossRef]
- Ivanov, D.; Ovchinnikov, M.; Penkov, V.; Roldugin, D.; Doronin, D.; Ovchinnikov, A. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties. Acta Astronaut. 2017, 132, 103–110. [Google Scholar] [CrossRef]
- Sofyali, A.; Jafarov, E.M.; Wisniewski, R. Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode. Aerosp. Sci. Technol. 2018, 76, 91–104. [Google Scholar] [CrossRef]
- Morozov, V.M.; Kalenova, V.I. Satellite Control Using Magnetic Moments: Controllability and Stabilization Algorithms. Cosm. Res. 2020, 58, 158–166. [Google Scholar] [CrossRef]
- Kondo, K.; Kolmanovsky, I.; Yoshimura, Y.; Bando, M.; Nagasaki, S.; Hanada, T. Nonlinear Model Predictive Detumbling of Small Satellites with a Single-Axis Magnetorquer. J. Guid. Control. Dyn. 2021, 44, 1211–1218. [Google Scholar] [CrossRef]
- Tikhonov, A.A. A method of semipassive attitude stabilization of a spacecraft in the geomagnetic field. Cosm. Res. 2003, 41, 63–73. [Google Scholar] [CrossRef]
- Yamakawa, H.; Hachiyama, S.; Bando, M. Attitude dynamics of a pendulum-shaped charged satellite. Acta Astronaut. 2012, 70. [Google Scholar] [CrossRef]
- Abdel-Aziz, Y.A.; Shoaib, M. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force. Res. Astron. Astrophys. 2015, 15, 127–144. [Google Scholar] [CrossRef]
- Giri, D.K.; Sinha, M.; Kumar, K.D. Fault-tolerant attitude control of magneto-Coulombic satellites. Acta Astronaut. 2015, 116, 254–270. [Google Scholar] [CrossRef]
- Giri, D.K.; Sinha, M. Three-axis attitude control of Earth-pointing isoinertial magneto-Coulombic satellites. Int. J. Dyn. Control 2017, 5, 644–652. [Google Scholar] [CrossRef]
- Aleksandrov, A.; Tikhonov, A. Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite. Aerosp. Sci. Technol. 2020, 104. [Google Scholar] [CrossRef]
- Antipov, K.A.; Tikhonov, A.A. Parametric control in the problem of spacecraft stabilization in the geomagnetic field. Autom. Remote Control 2007, 68, 1333–1345. [Google Scholar] [CrossRef]
- Tikhonov, A.A.; Spasic, D.T.; Antipov, K.A.; Sablina, M.V. Optimizing the electrodynamical stabilization method for a man-made Earth satellite. Autom. Remote Control 2011, 72, 1898–1905. [Google Scholar] [CrossRef]
- Antipov, K.A.; Tikhonov, A.A. Electrodynamic Control for Spacecraft Attitude Stability in the Geomagnetic Field. Cosm. Res. 2014, 52, 472–480. [Google Scholar] [CrossRef]
- Aleksandrov, A.Y.; Aleksandrova, E.B.; Tikhonov, A.A. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Adv. Space Res. 2018, 62, 142–151. [Google Scholar] [CrossRef]
- Kalenova, V.I.; Morozov, V.M. Stabilization of Satellite Relative Equilibrium Using Magnetic and Lorentzian Moments. Cosm. Res. 2021, 59, 343–356. [Google Scholar] [CrossRef]
- Aleksandrov, A.Y.; Tikhonov, A.A. Natural Magneto-velocity Coordinate System for Satellite Attitude Stabilization: Dynamics and Stability Analysis. J. Appl. Comput. Mech. 2023, 9, 513–520. [Google Scholar] [CrossRef]
- Ailabouni, D.; Meister, A.; Spindler, K. Attitude maneuvers avoiding forbidden directions. Astrodynamics 2023, 7, 351–362. [Google Scholar] [CrossRef]
- Xu, S.; Chen, T.; Wen, H.; Jin, D. Analytical libration control law for electrodynamic tether system with current constraint. Astrodynamics 2024, 8, 237–246. [Google Scholar] [CrossRef]
- Shigehara, M. Geomagnetic Attitude Control of an Axisymmetric Spinning Satellite. J. Spacecr. Rocket. 1972, 9, 391–398. [Google Scholar] [CrossRef]
- Abdel-Aziz, Y.; Shoaib, M. Attitude stabilization of a charged spacecraft subject to Lorentz force. Proceeding of the 2nd IAA Dynamics and Control of Space System, Rome, Italy, 24–26 March 2014. [Google Scholar]
- Abdel-Aziz, Y.; Shoaib, M. Periodic solutions for rotational motion of an axially symmetric charged satellite. Appl. Math. Sci. 2015, 9, 1551–1563. [Google Scholar] [CrossRef]
- Oland, E. Modeling and Attitude Control of Satellites in Elliptical Orbits. In Applied Modern Control; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Bai, S.; Wang, Y.; Liu, H.; Sun, X. Spacecraft fast fly-around formations design using the parallelogram configuration. Nonlinear Dyn. 2024, 1–22. [Google Scholar] [CrossRef]
- Tikhonov, A.A. Refinement of the Oblique Dipole Model in the Evolution of Rotary Motion of a Charged Body in the Geomagnetic Field. Cosm. Res. 2002, 40, 157–162. [Google Scholar] [CrossRef]
- Tikhonov, A.A.; Petrov, K.G. Multipole models of the Earth’s magnetic field. Cosm. Res. 2002, 40, 203–212. [Google Scholar] [CrossRef]
- Antipov, K.A.; Tikhonov, A.A. Multipole Models of the Geomagnetic Field: Construction of the Nth Approximation. Geomagn. Aeron. 2013, 53, 257–267. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Beletsky, V.V. Motion of an Artificial Satellite About Its Center of Mass; Israel Program for Scientific Translation; NASA: Jerusalem, Israel, 1966. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klyushin, M.A.; Maksimenko, M.V.; Tikhonov, A.A. Electrodynamic Attitude Stabilization of a Spacecraft in an Elliptical Orbit. Aerospace 2024, 11, 956. https://doi.org/10.3390/aerospace11110956
Klyushin MA, Maksimenko MV, Tikhonov AA. Electrodynamic Attitude Stabilization of a Spacecraft in an Elliptical Orbit. Aerospace. 2024; 11(11):956. https://doi.org/10.3390/aerospace11110956
Chicago/Turabian StyleKlyushin, Maksim A., Margarita V. Maksimenko, and Alexey A. Tikhonov. 2024. "Electrodynamic Attitude Stabilization of a Spacecraft in an Elliptical Orbit" Aerospace 11, no. 11: 956. https://doi.org/10.3390/aerospace11110956
APA StyleKlyushin, M. A., Maksimenko, M. V., & Tikhonov, A. A. (2024). Electrodynamic Attitude Stabilization of a Spacecraft in an Elliptical Orbit. Aerospace, 11(11), 956. https://doi.org/10.3390/aerospace11110956