Untangling Complexity in ASEAN Air Traffic Management through Time-Varying Queuing Models
Abstract
:1. Introduction
2. En-Route Trajectory Complexity in the FIR
2.1. Simulating Air Traffic in FRA
2.2. Hotspot Identification
3. Interpretation of the Complexity
3.1. Time-Varying Fluid Queue
3.2. Modeling Air Traffic Queues in the Hotspot
4. Untangling the Complexity in ATM
4.1. Segregating Aircraft Departure Flows
4.2. Effectiveness of the Departure Air Traffic Flow Control
4.2.1. Departure Time-Spacing Constraint
4.2.2. Measurement
4.2.3. Experiment Structure
4.2.4. Results
5. Discussion
5.1. Balancing Local Effects in the Wider Regional Network
5.2. Collaboration with Long Range Air Traffic Flow Management
5.3. Expansion to General Methods and Their Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraus, J. Free Route Airspace (FRA) in Europe. Perner’s Contacts 2011, 6, 129–135. [Google Scholar]
- Renner, P.; Rohacs, D.; Papp, G.; Kling, F. The effects of the introduction of Free Route (HUFRA, Hungarian Free Route Airspace) in the Hungarian Airspace. In Proceedings of the 8th SESAR Innovation Days, Salzburg, Austria, 3–7 December 2018; pp. 1–8. [Google Scholar]
- Duong, V.; Gawinowski, G.; Nicolaon, J.P.; Nguyen, H.H. Sector-less air traffic management: Initial investigations. Air Traffic Control Q. 2002, 10, 379–393. [Google Scholar] [CrossRef]
- Birkmeier, B. Feasibility Analysis of Sectorless and Partially Automated Air Traffic Management. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2015. [Google Scholar]
- Korn, B.; Mollwitz, V.; Finck, T.; Edinger, C. Validating sectorless ATM in the Hungarian airspace: Results of human in the loop simulations. In Proceedings of the 2020 Integrated Communications Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 8–10 September 2020. [Google Scholar]
- Martins, A.P.G.; Finck, T.; Mollwitz, V.; Kling, F.; Rohács, D. Feasibility study of flight centric mode of operations—A human performance approach. In Proceedings of the 9th SESAR Innovation Days, Athens, Greece, 3–5 December 2019. [Google Scholar]
- Sergeeva, M.; Delahaye, D.; Mancel, C.; Vidosavljevic, A. Dynamic airspace configuration by genetic algorithm. J. Traffic Transp. Eng. 2017, 4, 300–314. [Google Scholar] [CrossRef]
- Gerdes, I.; Temme, A.; Schultz, M. Dynamic airspace sectorisation for flight-centric operations. Transp. Res. Part C Emerg. Technol. 2018, 95, 460–480. [Google Scholar] [CrossRef]
- Djokic, J.; Lorenz, B.; Fricke, H. Air traffic control complexity as workload driver. Transp. Res. Part C Emerg. Technol. 2010, 18, 930–936. [Google Scholar] [CrossRef]
- Mogford, R.; Guttman, J.; Morrow, S.L.; Kopardekar, P. The Complexity Construct in Air Traffic Control: A Review and Synthesis of the Literature; DOT/FAA/CT-TN-95/22; FAA Technical Center: Atlantic City, NJ, USA, 1995. [Google Scholar]
- Gerdes, I.; Temme, A.; Schultz, M. From free-route air traffic to an adapted dynamic main-flow system. Transp. Res. Part C Emerg. Technol. 2020, 115, 102633. [Google Scholar] [CrossRef]
- Bin Jumad, A.S.; Tominaga, K.; Chua, X.Y.; Itoh, E.; Schultz, M.; Duong, V.N. Flow-Centric Air Traffic Control: Human in the Loop Simulation Experiment. In Proceedings of the 42nd Digital Avionics Systems Conference (DASC), Barcelona, Spain, 1–5 October 2023. [Google Scholar]
- Tominaga, K.; Wen Chen, A.K.; Sultana, J.; Schultz, M.; Itoh, E.; Duong, V. Operational Feasibility Assessment of the Free Route Airspace Concept in ASEAN Reasion. In Proceedings of the 26th Air Transport Research Society (ATRS) World Conference, Kobe, Japan, 1–4 July 2023. [Google Scholar]
- Higasa, K.; Itoh, E. Controlling Aircraft Inter-Arrival Time to Reduce Arrival Traffic Delay via a Queue-Based Integer Programming Approach. Aerospace 2022, 9, 663. [Google Scholar] [CrossRef]
- Itoh, E.; Mitici, M.; Schultz, M. Modeling Aircraft Departure at a Runway Using a Time-Varying Fluid Queue. Aerospace 2022, 9, 119. [Google Scholar] [CrossRef]
- Higasa, K.; Sekine, K.; Itoh, E. Effectiveness of Aircraft Inter-Arrival Control in Upstream Traffic Flow via a Combined Tandem Fluid Queue Model and Integer Programming Approach. IEEE Access 2023, 11, 15252–15270. [Google Scholar] [CrossRef]
- Itoh, E.; Schultz, M. Designing a Framework of Integrated Aircraft Departure and Surface Traffic Operation via Queuing Network Models. In Proceedings of the Fifteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2023), Savannah, GA, USA, 5–9 June 2023. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Mat. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Granger, G.; Durand, N. A traffic complexity approach through cluster analysis. In Proceedings of the 5th ATM R&D Seminar, Budapest, Hungary, 23–27 June 2003; pp. 1–10. [Google Scholar]
- Schultz, M.; Lubig, D.; Rosenow, J.; Itoh, E.; Athota, S.; Duong, V.N. Concept of a Long-Range Air Traffic Flow Management. In Proceedings of the SESAR Innovation Days, Virtual, 7–10 December 2020. [Google Scholar]
- Ma, C.; Alam, S.; Qing, C.; Delahaye, D. Dynamic air traffic flow coordination for flow-centric airspace management. In Proceedings of the Fifteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2023), Savannah, GA, USA, 5–9 June 2023. [Google Scholar]
- Liu, Y.; Whitt, W. The Gt/GI/st+GI many-server fluid queue. Queueing Syst. 2012, 71, 405–444. [Google Scholar] [CrossRef]
- Whitt, W. Time-Varying Queues. Queueing Model. Serv. Manag. 2018, 1, 79–164. [Google Scholar]
- AirtopSoft: AirTOp Software. Available online: https://airtopsoft.com/ (accessed on 22 February 2020).
- Schultz, M.; Lubig, D.; Asadi, E.; Rosenow, J.; Itoh, E.; Athota, S.; Duong, V.N. Implementation of a Long-Range Air Traffic Flow Management for the Asia-Pacific Region. IEEE Access 2021, 9, 124640–124659. [Google Scholar] [CrossRef]
- ICAO. Long range ATFM concept trials. In Proceedings of the 8th Meeting of the Asia/Pacific ATFM Steering Group (ATFM/SG/8), New Delhi, India, 14–18 May 2018. [Google Scholar]
Flow Group | C68 | C45 | C80 | C85 | C93 | C96 | Total in Singapore ACC (For Reference) |
---|---|---|---|---|---|---|---|
WMKK arrivals | 45 | 0 | 61 | 0 | 45 | 61 | 293 |
WMKK departures | 6 | 70 | 40 | 6 | 6 | 62 | 236 |
WSSS arrivals | 141 | 141 | 147 | 141 | 100 | 6 | 496 |
WSSS departures | 54 | 73 | 127 | 0 | 0 | 54 | 496 |
Others | 9 | 15 | 15 | 14 | 8 | 18 | 333 |
Sum | 255 | 299 | 390 | 161 | 159 | 201 | 1854 |
Case 1 | Case 2 | Case 3 | ||||
---|---|---|---|---|---|---|
WSSS Dep | WMKK Dep | WSSS Dep | WMKK Dep | WSSS Dep | WMKK Dep | |
Number of delayed aircraft (ac) | 109 | 32 | 78 | 22 | 45 | 19 |
Rate of delayed aircraft (%) | 85 | 84 | 61 | 58 | 35 | 50 |
Max. delay time (min) | 625 | 545 | 80 | 125 | 35 | 40 |
Average delay time (min) | 190 | 201 | 23 | 43 | 19 | 16 |
Total delay time (min) | 20,695 | 6440 | 1780 | 955 | 655 | 305 |
Designation | Segregation Threshold | Remarks |
---|---|---|
Case 1 | Strict model application | |
Case 2 | Medium strictness model application | |
Case 3 | Weak model application | |
Baseline | n/a | No queuing network model |
Area | Case 1 | Case 2 | Case 3 | Baseline |
---|---|---|---|---|
inside C80 | 13 | 12 | 18 | 22 |
controllable | 2 | 1 | 7 | 11 |
not controllable | 11 | 11 | 11 | 11 |
outside C80 | 25 | 35 | 35 | 28 |
sum | 38 | 47 | 53 | 50 |
Flow Group Pair | Case 1 | Case 2 | Case 3 | Baseline | Remarks |
---|---|---|---|---|---|
Involves WMKKdep | |||||
Others_WMKKdep | 1 | 5 | 3 | 3 | Mixed |
WMKKarr_WMKKdep | 2 | 1 | 2 | 2 | Mixed |
WMKKdep_WSSSarr | 6 | 4 | 6 | 9 | Improvement |
Involves WSSSdep | |||||
Others_WSSSdep | 0 | 2 | 5 | 4 | Improvement |
WMKKarr_WSSSdep | 5 | 6 | 6 | 7 | Improvement |
WSSSarr_WSSSdep | 0 | 6 | 8 | 7 | Improvement |
WSSSdep_WSSSdep | 13 | 7 | 7 | 0 | Deterioration |
Involves both WMKKdep and WSSSdep | |||||
WMKKdep_WSSSdep | 0 | 5 | 5 | 7 | Improvement |
Involves neither WMKKdep nor WSSSdep | |||||
Others_WMKKarr | 1 | 1 | 1 | 1 | No change |
WMKKarr_WMKKarr | 1 | 1 | 1 | 1 | No change |
WMKKarr_WSSSarr | 6 | 6 | 6 | 6 | No change |
WSSSarr_WSSSarr | 3 | 3 | 3 | 3 | No change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itoh, E.; Tominaga, K.; Schultz, M.; Duong, V.N. Untangling Complexity in ASEAN Air Traffic Management through Time-Varying Queuing Models. Aerospace 2024, 11, 11. https://doi.org/10.3390/aerospace11010011
Itoh E, Tominaga K, Schultz M, Duong VN. Untangling Complexity in ASEAN Air Traffic Management through Time-Varying Queuing Models. Aerospace. 2024; 11(1):11. https://doi.org/10.3390/aerospace11010011
Chicago/Turabian StyleItoh, Eri, Koji Tominaga, Michael Schultz, and Vu N. Duong. 2024. "Untangling Complexity in ASEAN Air Traffic Management through Time-Varying Queuing Models" Aerospace 11, no. 1: 11. https://doi.org/10.3390/aerospace11010011
APA StyleItoh, E., Tominaga, K., Schultz, M., & Duong, V. N. (2024). Untangling Complexity in ASEAN Air Traffic Management through Time-Varying Queuing Models. Aerospace, 11(1), 11. https://doi.org/10.3390/aerospace11010011