Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review)
Abstract
:1. Introduction
- Controlling the flow and surface flow of the AA with volumetric ponderomotive forces. It is worth noting that controlling the flow near AA with the magnetoplasma effect is based on controlling the main flow as well as the boundary layer;
- Controlling plasma-stimulated combustion in high-speed gas and plasma flows.
2. Methods for Controlling the Flow around the External and Internal Surfaces of AA
2.1. Methods Description
- Dynamic influence based on Lorentz force and electrostatic force (in the presence of uncompensated charges in the environment);
- Thermal influence.
2.2. Pulsed Plasma Dynamic Surface Discharges
- -
- -
- LSSD Brightness temperatures reach maximum in moments of time close to maximum energy input power (maximum current) (at ≈ 10 MW/cm—Tbr2,3 ~ 30 kK; for ≈ 100 MW/cm—Tbr,2 ~ 30 kK, in argon Tbr,3 ~ 40 kK and in the air Tbr,2,3 ~ 40 kK) and significantly fall for the second and third spectral intervals in the second (16 kK—MW/cm; 25 kK— ≈ 100 MW/cm) and the third half-periods of full current (13 kK— ≈ 10 MW/cm; 20 kK— ≈ 100 MW/cm) [17,18];
- -
2.3. Pulsed Nanosecond Surface Discharges
2.4. Pulse Nanosecond «Barrier» Surface Discharges
2.5. Surface Glow DC Discharge between Sectioned Electrodes
2.6. Pulse-Periodic Nanosecond (Volumetric) Discharge
2.7. Magnetoplasmic Control in High-Speed Gas and Plasma Flows
2.8. The Possibility of Controlling the High-Speed Flow of Gas and Plasma Using Pulsed Optical Discharge or Microwave Discharge
3. Methods for Controlling Plasma-Stimulated Combustion in High-Speed Gas and Plasma Flows
3.1. The Fuel and Air Components
3.2. Initiation of Combustion of the Fuel-Air Mixture by an Electron Beam
3.3. Initiation of a Detonation Wave by Laser Radiation
3.4. Ignition of a Combustible Mixture by a Laser Torch Formed near a Condensed Barrier
3.5. Photoplasmodynamic Method of Combustion Initiation
3.6. Capillary Discharge and Ignition of the Combustible Mixture
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bletzinger, P.; Ganguly, B.N.; VanWie, D.; Garscadden, A.J. Plasmas in high speed aerodynamics. Phys. D Appl. Phys. 2005, 38, R33. [Google Scholar] [CrossRef]
- Moreau, E.J. Airflow control by non-thermal plasma actuators. Phys. D Appl. Phys. 2007, 40, 605. [Google Scholar] [CrossRef]
- Miles, R.B. Lecture Series Notes for Von Karman Institute Lectures; Von Karman Institute: Sint-Genesius-Rode, Belgium, 2011. [Google Scholar]
- Boiko, A.V.; Dovgal, A.V.; Zanin, Y.B.; Kozlov, V.V. Three-dimensional structure of separated flows on wings. Thermophys. Aeromech. 1996, 3, 1–13. [Google Scholar]
- Mhitaryan, A.M.; Labinov, S.D.; Fridland, V.Y. Some Problems of Aerodynamics and Electro-Hydrodynamics; Kiev Institute of Civil Aviation Engineers: Kiev, Ukraine, 1964; Volume 1, p. 9397. [Google Scholar]
- Mhitaryan, A.M.; Maksimov, V.S.; Flidland, V.Y.; Labinov, S.D. Technology of boundary layer investigation with a new type work panel. J. Eng. Phys. Thermophys. 1961, 4, 237. [Google Scholar]
- Klimov, A.I.; Koblov, A.N.; Mishin, G.I.; Serov, Y.L.; Yavor, I.P. Shock wave propagation in a glow discharge. Sov. Tech. Phys. Lett. 1982, 8, 192. [Google Scholar]
- Roth, J.R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma. Phys. Plasmas. 2003, 10, 2117. [Google Scholar] [CrossRef]
- Roth, J.R. 25th Anniversary, IEEE Conference Record—Abstracts. In Proceedings of the 1998 IEEE International Conference on Plasma Science (Cat. No.98CH36221), Raleigh, NC, USA, 1–4 June 1998; p. 291. [Google Scholar]
- Roth, J.R.; Dai, X. Paper AIAA 2006-1203. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Paper AIAA 1998-0328. In Proceedings of the AIAA Meeting, Reno, NV, USA, 12–15 January 1998. [Google Scholar]
- Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 2000, 38, 1172. [Google Scholar] [CrossRef]
- Bedin, A.P.; Mishin, G.I. Pis’ma v JTF. Sov. Phys. Tech. Phys. Lett. 1995, 24, 719. [Google Scholar]
- Caruana, D. Plasmas for aerodynamic control. Plasma Phys. Control. Fusion 2010, 52, 124045. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.; Xia, Z.; Liu, B.; Deng, X. Review of actuators for high speed active flow control. Sci. China Technol. Sci. 2012, 55, 2225. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Numerical Simulation of Pulsed Jets of a High-Current Pulsed Surface Discharge. Comput. Therm. Sci. 2021, 13, 45–56. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Surzhikov, S.T.; Grishin, Y.М. Radiative gas dynamic of linear-stabilized surface discharge in atmospheric gases. In Proceedings of the 36th AIAA Plasmadynamics and Lasers Conference, Toronto, ON, Canada, 6 June 2005. Volume AIAA 2005-4929, 11p. [Google Scholar]
- Kuzenov, V.V.; Surzhikov, S.T.; Sharikov, I.V. Numerical simulation of linear-stabilized surface discharge in rare air. In Proceedings of the Fifteenth International Conference on MHD Energy Conversion and Sixth International Workshop on Magnetoplasma Aerodynamics, Moscow, Russia, 24–27 May 2005; Volume 2, p. 650. [Google Scholar]
- Zabaykin, V.A. Quality of High-Enthalpy Flow upon Electric-Arc Heating of Air in a Facility for In-vestigation Supersonic Combustion. Combust. Explos. Shock. Waves 2003, 39, 23–30. [Google Scholar] [CrossRef]
- Tretyakov, P.K. Organization of a pulsed mode of combustion in scramjets. Combust. Explos. Shock. Waves 2012, 48, 677. [Google Scholar] [CrossRef]
- Liu, Q.; Baccarella, D.; Lee, T. Review of Combustion Stabilization for Hypersonic Airbreathing Propulsion. Prog. Aerosp. Sci. 2020, 119, 100636. [Google Scholar] [CrossRef]
- Jacobsen, L.S.; Carter, C.D.; Jackson, T.A.; Williams, S.; Barnett, J. Plasma-Assisted Ignition in Scramjets. J. Propuls. Power 2008, 24, 641–654. [Google Scholar] [CrossRef]
- Lebouvier, S.A.; Kramer, N.J.; van Veldhuizen, E.M. Speed of streamers in argon over a flat surface of a dielectric. J. Phys. D Appl. Phys. 2009, 42, 015211. [Google Scholar]
- Timatkov, V.V.; Pietsch, G.J.; Saveliev, A.B.; Sokolova, M.V.; Temnikov, A.G. Influence of solid dielectric on the impulse discharge behaviour in a needle-to-plane air gap. J. Phys. D Appl. Phys. 2005, 38, 877–886. [Google Scholar] [CrossRef]
- Mursenkova, I.V.; Znamenskaya, I.A.; Lutsky, A.E. Influence of shock waves from plasma actuators on transonic and supersonic airflow. J. Phys. D Appl. Phys. 2018, 51, 105201. [Google Scholar] [CrossRef]
- Leger, L.; Sellam, M.; Barbosa, E.; Depussay, E. Visualization by discharge illu-mination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder. Meas. Sci. Technol. 2013, 24, 065401. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Znamenskaya, I.A.; Latfullin, D.F.; Mursenkova, I.V. Laminar-Turbulent Transition in a Supersonic Boundary Layer during Initiation of a Pulsed Surface Discharge. Tech. Phys. Lett. 2008, 34, 668–670. [Google Scholar] [CrossRef]
- Znamenskaya, I.; Mursenkova, I.; Kuli-Zade, T.; Kolycheva, A. Vizualization of 3D non-stationary flow in shock tube using nanosecond volume discharge. Shock. Waves 2009, 1, 533–538. [Google Scholar]
- Aulchenko, S.M.; Zamuraev, V.P.; Kalinina, A.P. Nonlinear effects of pulsed periodic energy supply on shock wave structure of transonic flow around airfoils. J. Appl. Mech. Tech. Phys. 2006, 47, 359–365. [Google Scholar] [CrossRef]
- Aulchenko, S.M.; Zamuraev, V.P.; Kalinina, A.P. Effect of asymmetric pulsed periodic energy supply on aerodynamic characteristics of airfoils. J. Appl. Mech. Tech. Phys. 2007, 48, 834–839. [Google Scholar] [CrossRef]
- Georgievsky, P.Y.; Levin, V.A. Unsteady effects for a supersonic flow past a pulsing energy source of high power. In Proceedings of the International Conference on the Methods of Aerophysical Research(ICMAR’98), Novosibirsk, Russia, 29 June–3 July 1998; p. 58. [Google Scholar]
- Asada, A.K.; Ninomiya, Y. Airfoil flow experiment on the duty cycle of dbd plasma actuator. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. AIAA-2009-531. [Google Scholar]
- Saveliev, A.; Sechenov, V.; Golub, V.; Son, E.; Aksenov, V.; Gubin, S. Sliding discharge for aircraft control. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. AIAA-2009-696. [Google Scholar]
- Jolibois, J.; Forte, M.; Moreau, E. Flow control and mems. In Proceedings of the IUTAM Symposium held at the Royal Geographical Society, London, UK, 19–22 September 2006. [Google Scholar]
- Opaits, D.; Roupassov, D.; Starikovskaia, S.; Starikovskii, A.; Zavialov, I.; Saddoughi, S. Plasma control of boundary layer using low-temperature non equilibrium plasma of gas discharge. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. AIAA-2005-1180. [Google Scholar]
- Zavialov, I.; Opaits, D.; Roupassov, D.; Starikovskaia, A.Y.; Saddoughi, S.G. Boundary layer control for naca-0015 airfoil in subsonic regime. Proc. 15th ICMHD 2005, 2005, 186–191. [Google Scholar]
- Roupassov, D.; Zavyalov, I.; Starikovskii, A. Boundary layer separation plasma control using low-temperature non-equilibrium plasma of gas discharge. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. AIAA-2006-373. [Google Scholar]
- Cybik, В.; Wilkerson, J.; Grossman, K. Performance characteristics of the sparkjet flow control actuator. In Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, USA, 28 June–1 July 2004. AIAA-2004-2131. [Google Scholar]
- Pavon, S.; Ott, P.; Leyland, P.; Dorier, J.-L.; Hollenstein, C. Effects of surface dielectric barrier discharge on transonic flows around an airfoil. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2004. AIAA-2009-649. [Google Scholar]
- Balcon, B.; Moreau, E. Electric wind produced by a surface dbd operating over a wide range of relative humidity. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2004. AIAA-2009-488. [Google Scholar]
- Son, E.E.; Tereshonok, D.V. Supersonic gas flow control by thermal vortices. High Temp. 2010, 48, 3–8. [Google Scholar]
- Golub, V.V.; Saveliev, A.S.; Sechenov, V.A.; Son, E.E.; Tereshonok, D.V. Plasma aerodynamics in a supersonic gas flow. High Temp. 2010, 48, 903–909. [Google Scholar] [CrossRef]
- Znamenskaya, I.A.; Latfullin, D.F.; Mursenkova, I.V.; Sysoev, N.N. Experimental Study of the Interaction of a Decaying Plasma of a Pulsed Volume Discharge with a Shock Layer. Vestnik Moskovskogo Universita. Ser. 3. Fiz. Astron. 2006, 3, 57–61. [Google Scholar]
- Znamenskaya, I.A.; Latfullin, D.F.; Lutskiĭ, A.E.; Mursenkova, I.V. Energy deposition in boundary gas layer during initiation of nanosecond sliding surface discharge. Tech. Phys. Lett. 2010, 36, 795. [Google Scholar] [CrossRef]
- Znamenskaya, I.A.; Latfullin, D.F.; Lutsky, A.E.; Mursenkova, I.V.; Sysoev, N.N. Development of gasdynamic perturbations propagating from a distributed sliding surface discharge. Tech. Phys. 2009, 52, 546–554. [Google Scholar] [CrossRef]
- Znamenskaya, I.A.; Ivanov, I.E.; Orlov, D.M.; Sysoev, N.N. Pulsed action on a shock wave in the case of self-localized high-current surface discharge in front of the shock-wave front. Dokl. Phys. 2009, 54, 107–110. [Google Scholar] [CrossRef]
- Patel, M.P.; Ng, T.T.; Vasudevan, S.; Corke, T.C.; Post, M.L.; McLaughlin, T.E.; Suchomel, C.F. Scaling Effects of an Aerodynam-icPlasma Actuator. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007. Paper AIAA 2007-635. [Google Scholar]
- Starikovskaia, S.M.; Starikovskiy, A.Y. Runaway Electrons Preionized Diffuse Discharges; NOVA Publishers: Hauppauge, NY, USA, 2014. [Google Scholar]
- Starikovskiy, A.Y.; Nikipelov, A.A.; Nudnova, M.M.; Roupassov, D.V. SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Sources Sci. Technol. 2009, 18, 034015. [Google Scholar] [CrossRef]
- Roupassov, D.V.; Nikipelov, A.A.; Nudnova, M.M.; Starikovskiy, A.Y. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J. 2009, 47, 168. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Kindysheva, S.V.; Kirpichnikov, A.A.; Kosarev, I.N.; Starikovskaia, S.M.; Starikovskiy, A.Y. Plasma decay in N2, CO2 and H2O excited by high-voltage nanosecond discharge. J. Phys. D Appl. Phys. 2007, 40, 4493. [Google Scholar] [CrossRef]
- Roupassov, D.V.; Starikovskiy, A.Y. Development of nanosecond surface discharge in ‘ctuator’ geometry. IEEE Trans. Plasma Sci. 2008, 36, 1312. [Google Scholar] [CrossRef]
- Anikin, N.B.; Zavialova, N.A.; Starikovskaia, S.M.; Starikovskiy, A.Y. Nanosecond-discharge development in long tubes. IEEE Trans. Plasma Sci. 2008, 36, 902. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Nudnova, M.M.; Aleksandrov, N.L.; Starikovskiy, A.Y. Influence of Polarity on the Properties of a Nanosecond Surface Barrier Discharge in Air at Atmospheric Pressure. Plasma Phys. Rep. 2010, 36, 90–98. [Google Scholar] [CrossRef]
- Xu, D.A.; Shneider, M.N.; Lacoste, D.A.; Laux, C.O. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air. J. Phys. D Appl. Phys. 2014, 47, 235202. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Starikovskiy, A. Plasma-Assisted Ignition and Combustion. Prog. Energy Combust. Sci. 2011, 39, 61–110. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.; Palm, P.; Ploenjes, E.; Rich, J.W.; Adamovich, I.V. Nonequilibrium Radio Frequency Discharge Plasma Effect on Conical Shock Wave: M = 2.5 Flow. AIAA J. 2003, 41, 465. [Google Scholar]
- Starikovskiy, A.; Miles, R.B. Experimental Investigation of Dynamic Stall in a Wide Range of Mach Numbers by Plasma Actuators with Combined Energy/Momentum Action. In Proceedings of the 47th AIAA Plasmadynamics and Lasers Conference, Washington, DC, USA, 13–17 June 2016. Paper AIAA 2016-4017. [Google Scholar]
- Macheret, S.O.; Ionikh, Y.Z.; Chernysheva, N.V.; Yalin, A.P.; Martinelli, L.; Miles, R.B. Shock wave propagation and dispersion in glow discharge plasmas. Phys. Fluids 2001, 13, 2693. [Google Scholar] [CrossRef]
- Khorunzhenko, V.I.; Roupassov, D.V.; Starikovskiy, A.Y. Hypersonic Flow and Shock Wave Structure Control by Low Tem-perature Nonequilibrium Plasma of Gas Discharge. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibition, Indianapolis, IN, USA, 7–10 July 2002. Paper AIAA 2002-2497. [Google Scholar]
- Nudnova, M.; Starikovskiy, A. Ozone formation in pulsed SDBD at wide pressure range. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. Paper AIAA 2012-407. [Google Scholar] [CrossRef]
- Khorunzhenko, V.I.; Roupassov, D.V.; Starikovskaia, S.M.; Starikovskiy, A.Y. Hypersonic Shock Wave—Low Temperature Nonequilibrium Plasma Interaction. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA, 20–23 July 2003. Paper AIAA 2003-5048. [Google Scholar]
- Montello, A.; Nishihara, M.; Takashima, K.; Rich, J.W.; Adamovich, I.V.; Lempert, W. Picosecond CARS Measurements of Vi-brational Distribution Functions in a Nonequilibrium Mach 5 Flow. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. Paper AIAA 2011-1322. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Approximate calculation of convective heat transfer near hypersonic aircraft surface. J. Enhanc. Heat Transf. 2018, 25, 181–193. [Google Scholar] [CrossRef]
- Sidorenko, A.A.; Zanin, B.Y.; Postnikov, B.V.; Budovsky, A.D.; Starikovskiy, A.Y.; Roupassov, D.V.; Zavialov, I.N.; Malmuth, N.D.; Smereczniak, P.; Silkey, J.S. Pulsed discharge actuators for rectangular wing separation control. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007. AIAA 2007-941. [Google Scholar]
- Sidorenko, A.A.; Budovsky, A.D.; Pushkarev, A.V.; Maslov, A.A. Flight Testing of DBD plasma separation control system. In Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. Paper AIAA 2008-373. [Google Scholar]
- Surzhikov, S.T.; Shang, J.S. Plasmadynamics of Glow Discharge in Hypersonic Internal Flows. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007. 26p, AIAA Paper 07-0994. [Google Scholar]
- Shang, J.S.; Menart, J.; Kimmel, R.; Hayes, J. Hypersonic Inlet with Plasma Induced Compression. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. 12p, AIAA 2006-0764. [Google Scholar]
- Shang, S.; Chang, C.; Surzhikov, S. Simulating Hypersonic Magneto-Fluid Dynamic Compression in Rectangular Inlet. AIAA J. 2007, 45, 2710–2720. [Google Scholar] [CrossRef]
- Hayes, W.D.; Probstein, R.F. Hypersonic Flow Theory; Academic Press: New York, NY, USA, 1959; 464p. [Google Scholar]
- Shang, J.S.; Surzhikov, S.T. Magneto-fluid-dynamics interaction for hypersonic flow control. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. 11p, AIAA 2004-0508. [Google Scholar]
- Loitsyansky, L.G. Mechanics of Liquids and Gases; Pergamon: Bakel, Senegal, 1966; 816p. [Google Scholar]
- Surzhikov, S.T. Hypersonic Rarefied Gas Flow around a Surface Glow Discharge with an External Magnetic Field; IPMech RAS: Moscow, Russia, 2011; 273p. [Google Scholar]
- Mesyats, G.A.; Bychkov, Y.I.; Kremnev, V.V. Pulsed nanosecond electric discharges in gases. Sov. Phys. Usp. 1972, 15, 282. [Google Scholar] [CrossRef]
- Zarin, A.S.; Kuzovnikov, A.A.; Shibkov, V.M. Freely Localized Microwave—Discharge in the Air. M. Oil and Gas; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Ershov, A.P.; Kalinin, A.V.; Lodinev, V.V.; Shibkov, V.M. Kinetics of gas heating in pulse discharge in air. Proc. XX ICPIG 1991, 2, 379–380. [Google Scholar]
- Anokhin, E.M.; Kuzmenko, D.N.; Kindysheva, S.V.; Soloviev, V.R.; Aleksandrov, N.L. Flow control: Non-thermal and thermal effects. Plasma Sources Sci. Technol. 2015, 24, 045014. [Google Scholar] [CrossRef]
- Bityurin, V.A.; Bocharov, A.N. Magnetohydrodynamic interaction in hypersonic flow around a blunt body. Fluid Gas Mech. 2006, 5, 188. [Google Scholar]
- Filimonova, E.A. Discharge effect on the negative temperature coefficient behaviour and multistage ignition in C3H8-air mixture. J. Phys. D Appl. Phys. 2015, 48, 015201. [Google Scholar] [CrossRef]
- Bityurin, V.A.; Bocharov, A.N. On the features of the electromagnetic thermal protection of the descent vehicle. PZhTF 2011, 37, 70–74. [Google Scholar]
- Bocharov, A.N.; Bityurin, V.A.; Lineberry, J. Study of MHD Interaction in Hypersonic Flows. In Proceedings of the 15th International Conference on MHD Energy Conversion, Moscow, Russia, 24–27 May 2005; pp. 399–416. [Google Scholar]
- Bityurin, V.A.; Bocharov, A.N. MHD Flow Control in Hypersonic Flight. In Proceedings of the 15th International Conference on MHD Energy Conversion, Moscow, Russia, 24–27 May 2005; Volume 2, pp. 429–433. [Google Scholar]
- Bityurin, V.A.; Bocharov, A.N. MHD Parachute in ReEntry Flight. Induced Electric Field Effects in Hypersonic MHD Flow. In Proceedings of the 2nd International ARA Days, Arcachon, France, 21–23 October 2008. Paper AA-3-2008-61. [Google Scholar]
- Bityurin, V.A.; Bocharov, A.N.; Popov, N.A. Non-Equilibrium Effects in MHD Parachute Concept: Induced Electric Field Effects. In Proceedings of the 47th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 5–8 January 2009. AIAA Paper 2009-1230. [Google Scholar]
- Aleksandrov, N.L.; Bazelyan, A.E.; Bazelyan, E.M.; Kochetov, I.V. Modeling of long streamers in atmospheric-pressure air. Plasma Phys. Rep. 1995, 21, 57. [Google Scholar]
- Hagelaar, G.J.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722. [Google Scholar] [CrossRef]
- Kossyi, I.A.; Kostinsky, A.Y.; Matveev, A.A.; Silakov, V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992, 1, 207. [Google Scholar] [CrossRef]
- Raiser, Y.P. Laser Spark and Discharge Propagation; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Morgan, C.G. Laser-induced breakdown of gases. Rep. Progress Phys. 1975, 38, 621. [Google Scholar] [CrossRef]
- Radziemski, L.J.; Cremers, D. Lasers-Induced Plasmas and Applications; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Mashek, I.C.; Lashkov, V.A.; Khoronzhuk, R.S.; Potapenko, D.P.; Brovkin, V.G. Microwave energy deposition in supersonic flows on laser-initiated dipile structures. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. AIAA-2014-0487. [Google Scholar]
- Khoronzhuk, R.S.; Karpenko, A.G.; Lashkov, V.A.; Potapenko, D.P.; Mashek, I.C. Microwave discharge initiated by double laser spark in supersonic airflow. J. Plasma Phys. 2015, 81, 905810307. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Ryzhkov, S.V. Turbulence in two-phase flows with macro-, micro- and nanoparticles: A review. Symmetry 2022, 14, 2433. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Ryzhkov, S.V. Particle-laden and droplet-laden two-phase flows past bodies (a review). Symmetry 2023, 15, 388. [Google Scholar] [CrossRef]
- Kolesnichenko, Y.F.; Brovkin, V.G.; Khmara, D.V.; Lashkov, V.A.; Mashek, I.C.; Ryvkin, M.I. In Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; Paper AIAA 2003-362.
- Lashin, A.M.; Starikovskiy, A.Y. Shock and detonation waves interaction with entropy layers. Tech. Phys. 1995, 65, 11. [Google Scholar]
- Lashin, A.M.; Starikovskiy, A.Y. Stability of interaction between shock waves and entropy layers. High Temp. 1996, 34, 94–104. [Google Scholar]
- Starikovskiy, A.; Limbach, C.; Miles, R.B. Trajectory Control of Small Rotating Projectiles by Laser Discharges. In Proceedings of the 47th AIAA Plasmadynamics and Lasers Conference, Washington, DC, USA, 13–17 June 2016. Paper AIAA 2016-4308. [Google Scholar]
- Georgievsky, P.Y.; Levin, V.A. Mechanics: Contemporary Issues; Moscow State University: Moscow, Russia, 1987. [Google Scholar]
- Briesclienk, S.; O’Byrne, S.; Kleine, H. Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 2013, 160, 145–148. [Google Scholar] [CrossRef]
- Katsnelson, S.S.; Pozdnyakov, G.A. Initiation of combustion processes in a hydrogen-oxygen mixture under the action of a low-energy strong-current electron beam. Combust. Explos. Shock. Waves 2007, 43, 132–138. [Google Scholar] [CrossRef]
- Bezgin, L.V.; Kopchenov, V.I.; Starik, A.M.; Titova, N.S. Initiation of a detonation wave in a supersonic flow of a hydrogen-oxygen mixture around a wedge by resonant laser radiation. J. Tech. Phys. 2007, 77, 39–46. [Google Scholar] [CrossRef]
- Chinitz, W. On the use of shock-induced combustion in hypersonic engines. In Proceedings of the Space Plane and Hypersonic Systems and Technology Conference, Norfolk, VA, USA, 18–22 November 1996. N 96-4536. [Google Scholar]
- Li, C.; Kailasanath, K.; Oran, E.S. Detonation structures generated by multiple shocks on ram-accelerator projectiles. Combust. Flame 1997, 108, 173–186. [Google Scholar] [CrossRef]
- Bezgin, L.; Canzhelo, A.; Gouskov, O.; Kopchenov, V.; Yarunov, Y. Some estimations of a possibility to utilize shock-induced combustion in propulsion systems. In Gaseous and Heterogeneous Detonations: Science to Applications; Roy, G., Frolov, S., Kailasanath, K., Smirnov, N., Eds.; ENAS Publishers: Moscow, Russia, 1999; pp. 285–300. [Google Scholar]
- Starik, A.M.; Titova, N.S. Numerical analysis of the kinetics of combustion of hydrogen-air mixtures with the addition of NH3, CH4 and C2Hb behind shock waves. Combust. Explos. Shock. Waves 2000, 36, 31–38. [Google Scholar] [CrossRef]
- Da Silva, F.L.F.; Deshaies, B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combust. Flame 2000, 121, 152–166. [Google Scholar] [CrossRef]
- Varatharajan, B.; Williams, F.A. Ethylene ignition and detonation chemistry, part 1: Detailed modeling and experimental comparison. J. Propuls. Power 2002, 18, 344–351. [Google Scholar] [CrossRef]
- Bezgin, L.V.; Smoked, V.I.; Starik, A.M.; Titova, N.S. On the initiation of combustion of a CH4-O2 mixture in a supersonic flow when O2 molecules are excited by an electric discharge. Combust. Explos. Shock. Waves 2008, 44, 3–16. [Google Scholar]
- Starik, A.M.; Titova, N.S. On the kinetics of detonation initiation in a supersonic flow of an H2 + O2 (air) mixture when O2 molecules are excited by resonant laser radiation. Kinet. Catal. 2003, 44, 35–46. [Google Scholar] [CrossRef]
- Starik, A.M.; Titova, N.S.; Lukhovitsky, B.I. Kinetics of low-temperature initiation of combustion of H2+O2+H2O mixtures upon excitation of H2O molecular vibrations by laser radiation. ZhTP 2004, 74, 77–83. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Evaluation of the possibility of ignition of a hydrogen–oxygen mixture by erosive flame of the impulse laser. Laser Phys. 2019, 29, 096001. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Imas, Y.A.; Romanov, G.S.; Khodyko, Y.V. Effect of High Power Radiation on Metals; National Technical Information Service: Moscow, Russia, 1970. [Google Scholar]
- Vedenov, A.A.; Gladush, G.G. Physical Processes in Laser Processing of Materials; Energoatomizdat: Moscow, Russia, 1985. [Google Scholar]
- Vorobyov, V.S. Breakdown of an erosion torch during quasi-stationary irradiation of metals by a laser. Quantum Electron. 1986, 13, 1909–1911. [Google Scholar]
- Kamrukov, A.S.; Kashnikov, G.N.; Kozlov, N.P.; Kondratenko, M.M.; Lebedev, E.F.; Orlov, V.K.; Ostashev, V.E.; Protasov, Y.S.; Semenov, A.M. Experimental investigation of the effectiveness of the matching of a magneto plasma compressor with an explosive magnetohydrodynamic generator. High Temp. 1984, 22, 313–318. [Google Scholar]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Numerical Modeling of Individual Plasma Dynamic Characteristics of a Light-Erosion MPC Discharge in Gases. Appl. Sci. 2022, 12, 3610. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Simulation of Parameters of Plasma Dynamics of a Magneto Plasma Compressor. Appl. Sci. 2023, 13, 5538. [Google Scholar] [CrossRef]
- Alekseev, A.I.; Chernikov, V.A.; Vaulin, D.N. The effect of a magnetic field on longitudinal-transverse discharge in the high-speed flow of an air-hydrocarbon mixture. Mosc. Univ. Phys. Bull. 2015, 70, 251–257. [Google Scholar] [CrossRef]
- Alekseev, A.I.; Vaulin, D.N.; Deshko, K.I.; Chernikov, V.A. Study of the possibility to use a magnetoplasma compressor for plasma-assisted combustion in a high-speed flow. Plasma Phys. Rep. 2018, 44, 766–774. [Google Scholar] [CrossRef]
- Alekseev, A.I.; Vaulin, D.N.; Stepanov, A.I.; Chernikov, V.A. The influence of an external magnetic field on the burning of a high-speed air-carbon mixture. High Temp. 2018, 56, 20–24. [Google Scholar] [CrossRef]
- Ershov, A.P.; Kamenshchikov, S.A.; Logunov, A.A.; Chernikov, V.A. Initiation of Combustion of a Supersonic Propane-Air Flow by a Discharge of a Magnetoplasma Compressor. High Temp. 2009, 47, 822–829. [Google Scholar] [CrossRef]
- Aleksandrov, A.F.; Ershov, A.P.; Kamenshchikov, S.A. Ignition of a supersonic propane-air mixture using pulsed plasma. Bull. Mosc. Univ. Ser. 3. Physics. Astron. 2008, 2, 63–65. [Google Scholar]
- Vinogradov, V.; Chernikov, V.; Timofeev, I.; Kolesnikov, E. Preliminary Study Of Different Plasma Discharges At M=2 Air Flow. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2006. AIAA-2005-0988. [Google Scholar]
- Aleksandrov, A.; Bychkov, V.; Chernikov, V.; Ershov, A.; Gromov, V.; Kolesnikov, E.; Levin, V.; Shibkov, V.; Vinogradov, V. Arc Discharge as a Means for Ignition and Combustion of Propane-AirMixture Supersonic Flow. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. AIAA 2006-1462. [Google Scholar]
- Ershov, A.P.; Kolesnikov, E.B.; Timofeev, I.B.; Chernikov, V.A.; Chuvashev, S.N.; Shibkov, V.M. Plasma-dynamic discharges in transverse supersonic air flows. High Temp. 2006, 44, 477–486. [Google Scholar] [CrossRef]
- Ershov, A.P.; Kolesnikov, E.B.; Timofeev, I.B.; Chernikov, V.A.; Chuvashev, S.N.; Shibkov, V.M. The interaction between plasma jet of a capillary discharge and transverse supersonic air flow. High Temp. 2007, 45, 580–587. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Starostin, A.V. Pulsed jets for dense plasma generation in an external magnetic field. Russ. Phys. J. 2020, 62, 2041–2045. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges. Russ. J. Nonlinear Dyn. 2019, 15, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Rudinskii, A.V.; Yagodnikov, D.A.; Ryzhkov, S.V.; Onufriev, V.V. Features of Intrinsic Electric Field Formation in Low-Temperature Oxygen–Methane Plasma. Tech. Phys. Lett. 2021, 47, 520–523. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Calculation of heat transfer and drag coefficients for aircraft geometric models. Appl. Sci. 2022, 12, 11011. [Google Scholar] [CrossRef]
- Shumeiko, A.I.; Telekh, V.D.; Ryzhkov, S.V. Probe Diagnostics and Optical Emission Spectroscopy of Wave Plasma Source Exhaust. Symmetry 2022, 14, 1983. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Estimation of the neutron generation in the combined magneto-inertial fusion scheme. Phys. Scr. 2021, 96, 125613. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. The Qualitative and Quantitative Study of Radiation Sources with a Model Configuration of the Electrode System. Symmetry 2021, 13, 927. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. The Adaptive Composite Block-Structured Grid Calculation of the Gas-Dynamic Characteristics of an Aircraft Moving in a Gas Environment. Mathematics 2022, 10, 2130. [Google Scholar] [CrossRef]
- Ryzhkov, S.V. Magneto-Inertial Fusion and Powerful Plasma Installations (A Review). Appl. Sci. 2023, 13, 6658. [Google Scholar] [CrossRef]
- Anokhin, E.M.; Popov, M.A.; Kochetov, I.V.; Starikovskii , A.Y.; Aleksandrov, N.L. Plasma Decay in the Afterglow of High-Voltage Nanosecond Discharges in Unsaturated and Oxygenated Hydrocarbons. Plasma Phys. Rep. 2017, 43, 1198–1207. [Google Scholar] [CrossRef]
- Starikovskiy, A.Y.; Aleksandrov, N.L. Gasdynamic Flow Control by Ultrafast Local Heating in a Strongly Nonequilibrium Pulsed Plasma. Plasma Phys. Rep. 2021, 47, 148–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review). Aerospace 2023, 10, 662. https://doi.org/10.3390/aerospace10080662
Kuzenov VV, Ryzhkov SV, Varaksin AY. Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review). Aerospace. 2023; 10(8):662. https://doi.org/10.3390/aerospace10080662
Chicago/Turabian StyleKuzenov, Victor V., Sergei V. Ryzhkov, and Aleksey Yu. Varaksin. 2023. "Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review)" Aerospace 10, no. 8: 662. https://doi.org/10.3390/aerospace10080662
APA StyleKuzenov, V. V., Ryzhkov, S. V., & Varaksin, A. Y. (2023). Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review). Aerospace, 10(8), 662. https://doi.org/10.3390/aerospace10080662