Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor
Abstract
:1. Introduction
2. Experimental Method
2.1. Thrust Chamber
2.2. Operating Conditions
3. Methodology
Lifted Flame Detection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, G. Flames: Technik der Flüssigkeits-Raketentriebwerke; DaimlerChryslerAerospace: Munich, Germany, 1999. [Google Scholar]
- Wang, Y.; Cho, C.H.; Du, J.; Sohn, C.H. Effects of recess length on combustion instability in a model chamber with a gas-centered swirl coaxial injector. Aerosp. Sci. Technol. 2022, 130, 107911. [Google Scholar] [CrossRef]
- Yang, B.; Cuoco, F.; Oschwald, M. Atomization and Flames in LOX/H2- and LOx/CH4- Spray Combustion. J. Propuls. Power 2007, 23, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Fiock, E.F. Measurement of Burning Velocity. In Physical Measurements in Gas Dynamics and Combustion; Ladenburg, R., Lewis, B., Pease, R., Taylor, H.S., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 409–438. [Google Scholar]
- Mayer, W.; Smith, J. Fundamentals of Supercritical Mixing and Combustion of Cryogenic Propellants. In Liquid Rocket Thrust Chambers; Popp, M., Hulka, J., Yang, V., Habiballah, M., Eds.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004; pp. 339–367. [Google Scholar]
- Herding, G.; Snyder, R.; Scouflaire, P.; Rolon, C.; Candel, S. Flame Stabilization in Cryogenic Propellant Combustion. Symp. Int. Combust. 1996, 26, 2041–2047. [Google Scholar] [CrossRef]
- Candel, S.; Herding, G.; Synder, R.; Scouflaire, P.; Rolon, C.; Vingert, L.; Habiballah, M.; Grisch, F.; Pé, M.; Bouchardy, P.; et al. Experimental Investigation of Shear Coaxial Cryogenic Jet Flames. J. Propuls. Power 1998, 14, 826–834. [Google Scholar] [CrossRef]
- Mayer, W.; Ivancic, B.; Schik, A.; Hornung, U. Propellant Atomization in LOX/GH2 Rocket Combustors. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13–15 July 1998. [Google Scholar]
- Martin, J.; Armbruster, W.; Hardi, J.S.; Suslov, D.; Oschwald, M. Experimental Investigation of Self-Excited Combustion Instabilities in a LOX/LNG Rocket Combustor. J. Propuls. Power 2021, 37, 944–951. [Google Scholar] [CrossRef]
- Martin, J.; Armbruster, W.; Suslov, D.; Stützer, R.; Hardi, J.S.; Oschwald, M. Flame Characteristics and Response of a High-Pressure LOX/CNG Rocket Combustor with Large Optical Access. Aerospace 2022, 9, 410. [Google Scholar] [CrossRef]
- Sender, J.; Suslov, D.I.; Deeken, J.; Gröning, S.; Oschwald, M. L42 Technology Demonstrator: Operational Experience. In Proceedings of the Space Propulsion Conference, Rome, Italy, 2–6 May 2016. [Google Scholar]
- Armbruster, W.; Hardi, J.S.; Suslov, D.; Oschwald, M. Injector-Driven Flame Dynamics in a High-Pressure Multi-Element Oxygen–Hydrogen Rocket Thrust Chamber. J. Propuls. Power 2019, 35, 632–644. [Google Scholar] [CrossRef]
- Hardi, J.; Deeken, J.; Armbruster, W.; Miene, Y.; Haemisch, J.; Martin, J.; Suslov, D.; Oschwald, M. LUMEN Thrust Chamber—Injector Design and Stability Analysis. In Proceedings of the 32th International Symposium on Space Technology and Science (ISTS), Fukui, Japan, 15–21 June 2019. [Google Scholar]
- Chemnitz, A. Analysis and Improvement of Rocket EngineCombustion Stability Simulations. Ph.D. Thesis, Technical University of Munich, München, Germany, 2022. [Google Scholar]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA-RP-1311; NASA Lewis Research Center: Cleveland, OH, USA, 1994. [Google Scholar]
- Kendrick, D.; Herding, G.; Scouflaire, P.; Rolon, C.; Candel, S. Effects of a Recess on Cryogenic Flame Stabilization. Combust. Flame 1999, 118, 327–339. [Google Scholar] [CrossRef]
- Schmitt, T. Assessment of Large Eddy Simulation for the prediction of recessedinner tube coaxial flames. CEAS Space J. 2023. [Google Scholar] [CrossRef]
- Davis, D.W.; Chehroudi, B. Measurements in an Acoustically Driven Coaxial Jet under Sub-, Near-, and Supercritical Conditions. J. Propuls. Power 2007, 23, 364–374. [Google Scholar] [CrossRef]
- Woodward, R.; Pal, S.; Farhangi, S.; Santoro, R. LOX/GH2 Shear Coaxial Injector Atomization Studies at Large Momentum Flux Ratios. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, CA, USA, 10–12 July 2006. [Google Scholar]
- Lasheras, J.C.; Villermaux, E.; Hopfinger, E.J. Break-up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet. J. Fluid Mech. 1998, 357, 351–379. [Google Scholar] [CrossRef] [Green Version]
- Tani, H.; Teramoto, S.; Okamoto, K. Effects of Injector Geometry on Cryogenic Shear Coaxial Jets at Supercritical Pressures. J. Propuls. Power 2015, 31, 883–888. [Google Scholar] [CrossRef]
- Hardi, J.S.; Harvey, C.G.M.; Oschwald, M.; Dally, B.B. Coupling of LOx Jet Atomization Under Transverse Acoustic Oscillations. J. Propuls. Power 2014, 30, 337–349. [Google Scholar] [CrossRef]
- Harrje, D.T.; Reardon, F.H. Liquid Propellant Rocket Combustion Instability; Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1972.
- Martin, J.; Armbruster, W.; Börner, M.; Hardi, J.S.; Oschwald, M. Flame-Acoustic Interaction in a Sub- and Supercritical, Single-Injector, LOX/CNG/LNG Rocket Combustor with OpticalAccess. In Proceedings of the AIAA SciTech Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar]
Test | ID | [bar]/ROF | Recess | Lifted | Stable |
---|---|---|---|---|---|
A | A.1 | 53/1.6 | ✓ | ✗ | ✓/✗ |
A.2 | 67/1.9 | ✓ | ✗ | ✗ | |
A.3 | 42/1.6 | ✓ | ✗ | ✓ | |
B | B.1 | 53/1.6 | ✓ | ✗ | ✓/✗ |
B.2 | 67/1.9 | ✓ | ✗ | ✗ | |
B.3 | 42/1.6 | ✓ | ✗ | ✓ | |
C | C.1 | 52/1.7–1.9 | ✓ | ✓/✗ | ✓/✗ |
C.2 | 50–60/1.7–2.7 | ✓ | ✗ | ✗ | |
D | D.1 | 50/1.7–2.0 | ✓ | ✓/✗ | ✓/✗ |
E | E.1 | 50/2.1 | ✗ | ✗ | ✓ |
E.2 | 51/2.0 | ✗ | ✗ | ✓ | |
E.3 | 52/1.8 | ✗ | ✗ | ✓ | |
E.4 | 52/1.6 | ✗ | ✗ | ✓ | |
F | F.1 | 49/1.8–2.1 | ✗ | ✓ | ✓ |
F.2 | 40/1.9 | ✗ | ✗ | ✓ | |
G | G.1 | 60/2.3 | ✗ | ✓ | ✓ |
G.2 | 60/2.4 | ✗ | ✓ | ✓ | |
G.3 | 30/1.4 | ✗ | ✗ | ✓ | |
H | H.1 | 60/2.3 | ✗ | ✓ | ✓ |
H.2 | 60/2.4 | ✗ | ✓ | ✓ | |
H.3 | 30/2.3 | ✗ | ✗ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, J.; Börner, M.; Hardi, J.; Suslov, D.; Oschwald, M. Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor. Aerospace 2023, 10, 542. https://doi.org/10.3390/aerospace10060542
Martin J, Börner M, Hardi J, Suslov D, Oschwald M. Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor. Aerospace. 2023; 10(6):542. https://doi.org/10.3390/aerospace10060542
Chicago/Turabian StyleMartin, Jan, Michael Börner, Justin Hardi, Dmitry Suslov, and Michael Oschwald. 2023. "Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor" Aerospace 10, no. 6: 542. https://doi.org/10.3390/aerospace10060542
APA StyleMartin, J., Börner, M., Hardi, J., Suslov, D., & Oschwald, M. (2023). Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor. Aerospace, 10(6), 542. https://doi.org/10.3390/aerospace10060542