Strength and Toughness of Hot-Rolled TA15 Aviation Titanium Alloy after Heat Treatment
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Heat Treatment
2.2. Mechanical Properties Test
3. Results and Discussion
3.1. Microstructure Observation
3.2. Microhardness
3.3. Impact Toughness
3.4. Bending Properties
3.5. Tensile Properties
3.6. Fracture Analysis
4. Conclusions
- (1)
- At a lower heat treatment temperature of 810 °C, cooling methods have minimal impact on the mechanical properties of the forged TA15 titanium alloys. The microstructure, microhardness, tensile strength, and impact toughness are similar to the initial samples.
- (2)
- At a higher heat treatment temperature above 940 °C, all cooling methods significantly alter the microstructures and mechanical properties. Transformed α phase and acicular α phase result in increased microhardness but decreased strength and plasticity. Potentially, oxidation may be one of the main factors leading to performance degradation after high-temperature heat treatment.
- (3)
- The tensile fracture morphology of the forged TA15 titanium alloys after different heat treatments is significantly different. The fracture morphology of the 940WQ sample is similar to quasi-cleavage fracture, and the tensile fracture of the TriAC sample is mainly brittle transgranular fracture, while the 810WQ and 810WQ samples have better tensile properties and exhibit deeper and more pronounced dimples than the initial sample.
Author Contributions
Funding
Conflicts of Interest
References
- Arab, A.; Chen, P.; Guo, Y. Effects of microstructure on the dynamic properties of TA15 titanium alloy. Mech. Mater. 2019, 137, 103121. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, S.; Yang, H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+ β phase field. Acta Mater. 2013, 61, 2057–2064. [Google Scholar] [CrossRef]
- Napoli, G.; Paura, M.; Vela, T.; Schino, A. Di Colouring titanium alloys by anodic oxidation. Metalurgija 2018, 57, 111–113. [Google Scholar]
- Yu, W.; Li, M.Q.; Luo, J. Effect of deformation parameters on the precipitation mechanism of secondary α phase under high temperature isothermal compression of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2010, 527, 4210–4217. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Liu, B.; Li, L.; Zhou, J.; Meng, X.; Lu, J. Microstructure and mechanical properties of in-situ synthesized Ti (N, C) strengthen IN718/1040 steel laminate by directed energy deposition. Mater. Sci. Eng. A 2022, 846, 143247. [Google Scholar] [CrossRef]
- Li, P.; Yang, Q.; Li, L.; Gong, Y.; Zhou, J.; Lu, J. Microstructure evolution and mechanical properties of in situ synthesized ceramic reinforced 316L/IN718 matrix composites. J. Manuf. Process. 2023, 93, 214–224. [Google Scholar] [CrossRef]
- Majorell, A.; Srivatsa, S.; Picu, R.C. Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part I: Experimental results. Mater. Sci. Eng. A 2002, 326, 297–305. [Google Scholar] [CrossRef]
- Uhlmann, E.; Kersting, R.; Klein, T.B.; Cruz, M.F.; Borille, A.V. Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP 2015, 35, 55–60. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, H.; Wang, M.; Cao, J. Tri-Modal Microstructure Evolution in Near-β and Two Phase Field Heat Treatments of Conventionally Forged TA15 Ti-Alloy. Adv. Eng. Mater. 2017, 19, 1600796. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, H.; Sun, J.; Cao, J. Evolution of lamellar α phase during two-phase field heat treatment in TA15 alloy. Int. J. Hydrogen Energy 2017, 42, 20849–20856. [Google Scholar] [CrossRef]
- Li, Y.; Gao, P.; Yu, J.; Jin, S.; Chen, S.; Zhan, M. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation. J. Mater. Sci. Technol. 2022, 98, 72–86. [Google Scholar] [CrossRef]
- Sun, Q.J.; Xie, X. Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing. Mater. Sci. Eng. A 2018, 724, 493–501. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, P.; Li, H.; Cai, Y.; Zhan, M. On the fracture behavior and toughness of TA15 titanium alloy with tri-modal microstructure. Mater. Sci. Eng. A 2019, 753, 238–246. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Q.; Wang, J.; Ren, X.; Hou, H. The heat treatment improving the mechanical and fatigue property of TA15 alloy joint by friction stir welding. Mater. Charact. 2021, 180, 111399. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Z.; Cao, J.; Yin, Z. Formation and evolution of tri-modal microstructure during dual heat treatment for TA15 Ti-alloy. J. Alloys Compd. 2019, 786, 894–905. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, K.; Huang, K.; Liu, G. Recrystallization behavior during hot tensile deformation of TA15 titanium alloy sheet with substantial prior deformed substructures. Mater. Charact. 2019, 151, 429–435. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Z.; Cao, J.; Yin, Z. Microstructure and Mechanical Behavior of Heat-Treated and Thermomechanically Processed TA15 Ti Alloy Composites. J. Mater. Eng. Perform. 2019, 28, 788–799. [Google Scholar] [CrossRef]
- Zhong, Y.U. TA15 Effect of annealing process on three directions hardness and microstructure. Heat Treat. Met. 2011, 36, 73–75. (In Chinese) [Google Scholar]
- Zhao, H.J.; Wang, B.Y.; Liu, G.; Yang, L.; Xiao, W.C. Effect of vacuum annealing on microstructure and mechanical properties of TA15 titanium alloy sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 1881–1888. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, X.; Kou, H.; Chang, J.; Yin, Z.; Li, J. Improvement of microstructure homogenous and tensile properties of powder hot isostatic pressed TA15 titanium alloy via heat treatment. Mater. Lett. 2022, 311, 131585. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Li, L.; Gong, Y.; Zhou, J.; Lu, J. Ablation oxidation and surface quality during laser polishing of TA15 aviation titanium alloy. J. Mater. Res. Technol. 2023, 23, 6101–6114. [Google Scholar] [CrossRef]
- Wang, X.; Gao, P.; Zhan, M.; Yang, K.; Domg, Y.; Li, Y. Development of microstructural inhomogeneity in multi-pass flow forming of TA15 alloy cylindrical parts. Chin. J. Aeronaut. 2020, 33, 2088–2097. [Google Scholar] [CrossRef]
- Wang, K.; Liu, G.; Tao, W.; Zhao, J.; Huang, K. Study on the mixed dynamic recrystallization mechanism during the globularization process of laser-welded TA15 Ti-alloy joint under hot tensile deformation. Mater. Charact. 2017, 126, 57–63. [Google Scholar] [CrossRef]
- Vo, P.; Jahazi, M.; Yue, S.; Bocher, P. Flow stress prediction during hot working of near-α titanium alloys. Mater. Sci. Eng. A 2007, 447, 99–110. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Liu, G.; Zhao, H.; Zhou, J. Hot Tensile Behavior and Self-consistent Constitutive Modeling of TA15 Titanium Alloy Sheets. J. Mater. Eng. Perform. 2015, 24, 4647–4655. [Google Scholar] [CrossRef]
- Hao, F.; Xiao, J.; Feng, Y.; Wang, Y.; Ju, J.; Du, Y.; Wang, K.; Xue, L.; Nie, Z.; Tan, C. Tensile deformation behavior of a near-titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range. J. Mater. Res. Technol. 2020, 9, 2818–2831. [Google Scholar] [CrossRef]
- Zhao, H.-J.; Wang, B.-Y.; Ju, D.-Y.; Chen, G.-J. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti−6Al−2Zr−1Mo−1V alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 2449–2459. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Cai, J. Constitutive model prediction and flow behavior considering strain response in the thermal processing for the TA15 titanium alloy. Materials 2018, 11, 1985. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, G.; Zhang, W.; Chen, W.; Yu, Y. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by pre-sintering and canned extrusion. J. Alloys Compd. 2018, 738, 164–172. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, W.; Zeng, L.; Cui, G.; Chen, W. Room-temperature and high-temperature tensile mechanical properties of TA15 titanium alloy and TiB whisker-reinforced TA15 matrix composites fabricated by vacuum hot-pressing sintering. Materials 2017, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lv, L.; Liu, G.; Wang, K. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model. Mater. Sci. Eng. A 2017, 707, 30–39. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Huang, H.; Fang, S.; Chen, P.; Zhao, J.; Qin, Y. Behaviour and constitutive modelling of ductile damage of Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si alloy under hot tensile deformation. J. Alloys Compd. 2019, 780, 284–292. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, L.; Liu, G. Experimental and simulated analysis of texture evolution of TA15 titanium alloy sheet during hot tensile deformation at 750 °C. Procedia Eng. 2017, 207, 2179–2184. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; He, B.; Huang, M.; Yuan, S. Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy. Mater. Des. 2015, 86, 146–151. [Google Scholar] [CrossRef]
- Ji, Z.; Shen, C.; Wei, F.; Li, H. Dependence of macro- and micro-properties on α plates in Ti-6Al-2Zr-1Mo-1V alloy with tri-modal microstructure. Metals 2018, 8, 299. [Google Scholar] [CrossRef]
- Li, P.; Zhou, J.; Li, L.; Gong, Y.; Lu, J.; Meng, X. Influence of depositing sequence and materials on interfacial characteristics and mechanical properties of laminated composites. Mater. Sci. Eng. A 2021, 827, 142092. [Google Scholar] [CrossRef]
Alloy Element | Al | Zr | Mo | V | Fe | C | Ti |
---|---|---|---|---|---|---|---|
Mass fraction | 6.3 | 1.9 | 1.32 | 1.68 | 0.04 | 0.01 | Bal |
Sample Name | Heat Treatment Condition |
---|---|
None | No heat treatment |
810AC | 810 °C for 2 h—Air cooling(AC) |
810WQ | 810 °C for 2 h—water quench (WQ) |
940WQ | 940 °C for 1 h—water quench (WQ) |
TriAC | Step1: 965 °C for 1 h—Air cooling(AC) |
Step2: 950 °C for 1 h—Air cooling(AC) | |
Step3: 810 °C for 1 h—Air cooling(AC) | |
TriWQ | Step1: 995 °C for 1 h—water quench (WQ) |
Step2: 940 °C for 1 h—water quench (WQ) | |
Step3: 810 °C for 1 h—water quench (WQ) |
Sample Name | Slope of the Linear Elasticity mE (MPa) | Maximum Bending Force Fbb (N) | Bending Strength Rbb (MPa) |
---|---|---|---|
None | 466,811.41 | 2003.1 | 7511.25 |
810AC | 59,630.48 | 1312.3 | 4920.0 |
810WQ | 489,572.17 | 1486.6 | 5572.5 |
940WQ | 364,184.23 | 473.2 | 1773.75 |
TriAC | 360,134.39 | 338.3 | 1267.5 |
TriWQ | 253,875.59 | 214.5 | 802.53 |
Sample Name | Ultimate Tensile Strength σu (MPa) | Yield Strength σy (MPa) | Elongation ε (%) |
---|---|---|---|
None | 936 ± 21 | 891 ± 18 | 27.92 ± 1.2 |
810AC | 987 ± 25 | 886 ± 17 | 17.78 ± 1.3 |
810WQ | 984 ± 40 | 805 ± 32 | 16.2 ± 2.3 |
940WQ | 618 ± 84 | 105 ± 32 | 14.02 ± 3.2 |
TriAC | 529 ± 36 | 272 ± 25 | 5.59 ± 0.8 |
TriWQ | 364 ± 41 | 325 ± 38 | 2.9 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Pan, X.; Liu, B.; Liu, B.; Li, P.; Liu, Z. Strength and Toughness of Hot-Rolled TA15 Aviation Titanium Alloy after Heat Treatment. Aerospace 2023, 10, 436. https://doi.org/10.3390/aerospace10050436
Li L, Pan X, Liu B, Liu B, Li P, Liu Z. Strength and Toughness of Hot-Rolled TA15 Aviation Titanium Alloy after Heat Treatment. Aerospace. 2023; 10(5):436. https://doi.org/10.3390/aerospace10050436
Chicago/Turabian StyleLi, Liangliang, Xin Pan, Biao Liu, Bin Liu, Pengfei Li, and Zhifeng Liu. 2023. "Strength and Toughness of Hot-Rolled TA15 Aviation Titanium Alloy after Heat Treatment" Aerospace 10, no. 5: 436. https://doi.org/10.3390/aerospace10050436
APA StyleLi, L., Pan, X., Liu, B., Liu, B., Li, P., & Liu, Z. (2023). Strength and Toughness of Hot-Rolled TA15 Aviation Titanium Alloy after Heat Treatment. Aerospace, 10(5), 436. https://doi.org/10.3390/aerospace10050436