RAMSEES: A Model of the Atmospheric Radiative Environment Based on Geant4 Simulation of Extensive Air Shower
Abstract
:1. Introduction
2. Approach and Methodology
2.1. Extensive Atmospheric Air Shower
2.2. Approach in Modelling the EAS Phenomenon
2.3. Physics and Methodology
- We create a planar detector in the atmosphere at the altitude . From this detector, we can extract every particle crossing it and then extract all the secondaries generated by the primary particle.
- By compiling all the particles generated by type (neutron, proton, muons…) we create a spectrum for each kind of particle .
- Then we compile all the spectra of the particles generated by all simulations of a primary of the same energy at the same altitude to create the average spectra generated by a primary of energy at the altitude .
- Then we convolute the average spectra to the population of primary particles at the position and at the time with the energy at 100 km, generating the convoluted spectra of the particle created by the primary particle with the energy at z altitude.
- Finally, we compile all the convoluted spectra of the particle at the altitude , generating the spectra of particle at the position , at the altitude at the time . To have an acceptable database size, we chose to focus on specific altitudes, which are z = 0 km, 3 km, 5 km, 7 km, 12 km, 18 km, and 40 km. This choice makes sense for ground level, avionic and stratospheric balloon applications.
3. Parameters Needed for the Simulations
3.1. Constitution of the Atmosphere
3.1.1. MSISE2000 Model
3.1.2. Segmentations of the Atmosphere
3.2. Primary Particles
3.2.1. Compiling Proton Spectrum from Instrument and Model
3.2.2. Discretization of the Primary Spectrum
- The calculation time: one proton of 100 TeV took, on average, 7 h to simulate on the CNES cluster, as shown in Figure 9. In total, we simulated for more than 300 million seconds equivalent 1 CPU (~10 years) in the CNES cluster.
- The number of particles per time unit and surface, for a geometry of 30 km by 30 km at the top of the atmosphere: there is only one proton per second having an energy of 100 TeV or higher. This must be compared to the value of of protons between 1 GeV and 10 GeV, which arrive on the same surface per second.
4. Monte Carlo Modelling and Extraction of the Model
4.1. Monte Carlo Simulation
4.2. Extracting Secondary Particle Spectrum from EAS Simulation
Compiling Simulation from the Same Energy
5. Model Results and Analysis
5.1. Comparison with Experimental Data
5.2. Comparison to Existing Models
6. Conclusions and Discussions
- At high altitude (18 km), our results are in very good agreement with MAIRE.
- At avionic altitude (12 km), our results are in good agreement with both MAIRE and IEC standard. RAMSEES seems to overestimate neutron flux below 10 MeV, which is not an issue since electronic devices are not sensitive to fast neutrons below a few MeV.
- At 7 km of altitude, we have the same trend as MAIRE but with a slight enhancement of neutron flux. We cannot claim which one is closer to the real flux, and more experimental data are required. Regarding concerns over electronic reliability, it is probably better to overestimate the risk.
- At 3 km of altitude, RAMSEES shows a good agreement with experimental data at 3 km, if we compare them to 8 years of experimental data at Pic du Midi at 2.9 km.
- At ground level, our results have a shape similar to those of MAIRE and JEDEC spectra. However, here again, we seem to overestimate the risk, compared to the other models.
- The discretization of the atmosphere into layers could be improved by increasing the number of layers.
- The number of primary proton energies used for the simulation could be increased.
- Some more comparisons are also possible with other existing tools such as MCeq [44].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Allen, J.A.; McIlwain, C.E.; Ludwig, G.H. Radiation observations with satellite 1958 ε. J. Geophys. Res. 1959, 64, 271–286. [Google Scholar] [CrossRef]
- Auger, P.; Ehrenfest, P.; Maze, R.; Daudin, J.; Fréon, R.A. Extensive Cosmic-Ray Showers. Rev. Mod. Phys. 1939, 11, 288–291. [Google Scholar] [CrossRef]
- Rossi, B. On the Magnetic Deflection of Cosmic Rays. Phys. Rev. 1930, 36, 606. [Google Scholar] [CrossRef]
- Rao, M.V.S.; Sreekantan, B.V. Extensive Air Showers; World Scientific: Singapore, 1998. [Google Scholar]
- Clem, J.M.; De Angelis, G.; Goldhagen, P.; Wilson, J. New calculations of the atmospheric cosmic radiation field—results for neutron spectra. Radiat. Prot. Dosim. 2004, 110, 423–428. [Google Scholar] [CrossRef]
- Liu, H.; Hou, Y.; Li, H.; Song, Y.; Hu, L.; Liang, M. Cosmic-ray neutron fluxes and spectra at different altitudes based on Monte Carlo simulations. Appl. Radiat. Isot. 2021, 175, 109800. [Google Scholar] [CrossRef]
- Pazianotto, M.T.; Cortés-Giraldo, M.A.; Federico, C.A.; Gonçalez, O.L.; Quesada, J.M.; Carlson, B.V. Determination of the cosmic-ray-induced neutron flux and ambient dose equivalent at flight altitude. J. Phys. Conf. Ser. 2014, 630, 012022. [Google Scholar] [CrossRef] [Green Version]
- Pastircak, B.; Bobik, P.; Putiš, M.; Bertaina, M.; Fenu, F.; Shinozaki, K.; Szabelski, J.; Santangelo, A. Modelling Muon and Neutron Fluxes and Spectra on the Earth’s Ground Induced by Primary Cosmic Rays. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Overholt, A.C.; Melott, A.L.; Atri, D. Modeling cosmic ray proton induced terrestrial neutron flux: A look-up table. J. Geophys. Res. Space Phys. 2013, 118, 2765–2770. [Google Scholar] [CrossRef] [Green Version]
- Taber, A.; Normand, E. Single event upset in avionic. IEEE Trans. Nucl. Sci. 1993, 40, 120–126. [Google Scholar] [CrossRef]
- Normand, E. Single Event Effects in Avionics. IEEE Trans. Nucl. Sci. 1996, 43, 461–474. [Google Scholar] [CrossRef]
- JEDEC. Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray Induced Soft Error in Semiconductor Devices; JEDEC: Arlington, VA, USA, 2021. [Google Scholar]
- IEC 62396-1:2016; Process Management for Avionics—Atmospheric Radiation Effects—Part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects within Avionics Electronic Equipment. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- MAIRE+ Demonstration Website. Surrey Space Centre. Available online: https://spaceweather.surrey.ac.uk/ (accessed on 12 December 2022).
- EXPACS Homepage. JAEA. Available online: https://phits.jaea.go.jp/expacs/ (accessed on 12 December 2022).
- Ziegler, J. Terrestrial cosmic rays. IBM J. Res. Dev. 1996, 40, 19–39. [Google Scholar] [CrossRef]
- Models for Atmospheric Ionising Radiation Effects—MAIRE. Available online: http://maire.uk (accessed on 15 January 2023).
- Lei, F.; Clucas, S.; Dyer, C.; Truscott, P. An atmospheric radiation model based on response matrices generated by detailed Monte Carlo Simulations of cosmic ray interactions. IEEE Trans. Nucl. Sci. 2004, 51, 3442–3451. [Google Scholar] [CrossRef]
- Lei, F.; Hands, A.; Clucas, S.; Dyer, C.; Truscott, P. Improvement to and Validations of the QinetiQ Atmospheric Radiation Model (QARM). IEEE Trans. Nucl. Sci. 2006, 53, 1851–1858. [Google Scholar] [CrossRef]
- Hands, A.; Lei, F.; Davis, C.; Clewer, B.; Dyer, C.; Ryden, K. A New Model for Nowcasting the Aviation Radiation Environment with Comparisons to In Situ Measurements Durign GLEs. Space Weather 2022, 20, e2022SW003155. [Google Scholar] [CrossRef]
- Sato, T.; Niita, K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. Radiat. Res. 2006, 166, 544–555. [Google Scholar] [CrossRef]
- Sato, T.; Yasuda, H.; Niita, K.; Endo, A.; Shiver, L. Development of PARMA: PHITS based Analytical Radiation Model in the Atmosphere. Radiat. Res. 2008, 170, 244–259. [Google Scholar] [CrossRef]
- Sato, T. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLoS ONE 2015, 10, e0144679. [Google Scholar] [CrossRef] [Green Version]
- Sato, T. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes. PLoS ONE 2016, 11, e0160390. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Niita, K.; Matsuda, N.; Hashimoto, S.; Iwamoto, Y.; Noda, S.; Ogawa, T.; Iwase, H.; Nakashima, H.; Fukahori, T.; et al. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J. Nucl. Sci. Technol. 2013, 50, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Hubert, G.; Bezerra, F.; Nicot, J.-M.; Artola, L.; Cheminet, A.; Valdivia, J.-N.; Mouret, J.-M.; Meyer, J.-R.; Cocquerez, P. Atmospheric Radiation Environment Effects on Electronic Balloon Board Observed During Polar Vortex and Equatorial Operational Campaigns. IEEE Trans. Nucl. Sci. 2014, 61, 1703–1709. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.; Drob, D.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- nrlmsise00. Available online: https://pypi.org/project/nrlmsise00/ (accessed on 6 October 2021).
- Maurin, D.; Melot, F.; Taillet, R. A database of charged cosmic rays. Astron. Astrophys. 2014, 569, A32. [Google Scholar] [CrossRef] [Green Version]
- Maurin, D.; Dembinski, H.; Gonzalez, D.; Maris, L.; Frédéric, M. Cosmic-Ray Database Update: Ultra-High Energy, Ultra-Heavy, and Antinuclei Cosmic-Ray Data (CRDB v4.0). Universe 2020, 6, 102. [Google Scholar] [CrossRef]
- Terashima, Y. Solar Modulation of Primary Cosmic Rays. Prog. Theor. Phys. 1960, 23, 1138–1150. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.S. Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 2013, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, W. Cosmic Ray Spectra of Various Instruments. Available online: https://web.physics.utah.edu/~whanlon/spectrum.html (accessed on 4 January 2023).
- Software Download Archive—Geant4 10.6. Geant4, 6 December 2019. Available online: https://geant4.web.cern.ch/support/download_archive?page=1 (accessed on 6 December 2022).
- GitHub Geant4 Release v10.6.0. Geant4, 6 December 2019. Available online: https://github.com/Geant4/geant4/releases/tag/v10.6.0 (accessed on 6 December 2022).
- Physics Reference Manual Release 11.0. Available online: https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf (accessed on 28 November 2022).
- Apostolakis, J.; Folger, G.; Grichine, V.; Heikkinen, A.; Howard, A.; Ivanchenko, V.; Kaitaniemi, P.; Koi, T.; Kosov, M.; Quesada, J.M.; et al. Progress in hadronic physics modelling in Geant4. J. Phys. Conf. Ser. 2009, 160, 012073. [Google Scholar] [CrossRef]
- Hubert, G.; Silvia, V.; Alba, Z. Temporal Series Analyses of Cosmic-Ray-Induced-Neutron Spectra Measured in High-Altitude During the Last Two Decades. In Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA, 24 July–1 August 2019. [Google Scholar]
- Available online: https://web.ikp.kit.edu/rulrich/crmc.html (accessed on 15 January 2023).
- Andrii, T.; David, D.; Chuan, Y.; Mingyang, C.; Xiang, L.; Xin, W. TeV–PeV Hadronic Simulations with DAMPE. In Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA, 24 July–1 August 2019; p. 143. [Google Scholar] [CrossRef]
- Available online: https://pypi.org/project/MCEq/ (accessed on 15 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cintas, H.; Wrobel, F.; Ruffenach, M.; Herrera, D.; Saigné, F.; Varotsou, A.; Bezerra, F.; Mekki, J. RAMSEES: A Model of the Atmospheric Radiative Environment Based on Geant4 Simulation of Extensive Air Shower. Aerospace 2023, 10, 295. https://doi.org/10.3390/aerospace10030295
Cintas H, Wrobel F, Ruffenach M, Herrera D, Saigné F, Varotsou A, Bezerra F, Mekki J. RAMSEES: A Model of the Atmospheric Radiative Environment Based on Geant4 Simulation of Extensive Air Shower. Aerospace. 2023; 10(3):295. https://doi.org/10.3390/aerospace10030295
Chicago/Turabian StyleCintas, Hugo, Frédéric Wrobel, Marine Ruffenach, Damien Herrera, Frédéric Saigné, Athina Varotsou, Françoise Bezerra, and Julien Mekki. 2023. "RAMSEES: A Model of the Atmospheric Radiative Environment Based on Geant4 Simulation of Extensive Air Shower" Aerospace 10, no. 3: 295. https://doi.org/10.3390/aerospace10030295
APA StyleCintas, H., Wrobel, F., Ruffenach, M., Herrera, D., Saigné, F., Varotsou, A., Bezerra, F., & Mekki, J. (2023). RAMSEES: A Model of the Atmospheric Radiative Environment Based on Geant4 Simulation of Extensive Air Shower. Aerospace, 10(3), 295. https://doi.org/10.3390/aerospace10030295