The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance
Abstract
:1. Introduction
Mission
2. Phases of the Dvaraka Initiative
3. Pre-Initiative Phase
3.1. Martian ADministration on Earth (MADE)
3.2. Settlement Site
3.2.1. Site Selection Criteria
3.2.2. Proposed Settlement Site
3.2.3. Characteristics of Selected Site
3.3. Dawn of The Dvaraka Initiative
4. Settlement Phase
4.1. Dvarakans Arrival
4.2. Dvaraka’s Architectural Concept
4.3. Infrastructure Materials
4.4. Dvaraka’s Life Support System
4.5. Food Production and Waste Management
4.6. Electricity Production
4.7. Thermal Design
4.8. Against All Odds of Dust Storm
5. Self-Sustaining Phase
5.1. Economic System
5.1.1. Initial Investment
5.1.2. Profitable Operation
5.1.3. Cost Plan
- Gradual Increase until 2054: Pre-Initiative phase and development of the project.
- Steep Increase until 2059: revenue generated from tourism and asteroid mining.
- Steep reduction in 2060: repayment of the initial investment
- Increase in revenue after 2060: profitable ventures in a fully functioning society
5.1.4. Economic Viability and Future Scope
5.2. Social and Political Model
5.2.1. The Dvaraka Council (TDC)
5.2.2. Smart Card System
5.2.3. Worst Case Scenario
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levchenko, I.; Xu, S.; Mazouffre, S.; Keidar, M.; Bazaka, K. Mars colonization: Beyond getting there. In Terraforming Mars; Beech, M., Seckbach, J., Gordon, R., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2021; pp. 73–98. [Google Scholar]
- Margulis, L.; Guerrero, R. Life as a planetary phenomenon: The colonization of Mars. Microbiologia 1995, 11, 173–184. [Google Scholar]
- Zubrin, R. The economic viability of Mars colonization. In Deep Space Commodities; James, T., Ed.; Springer: Cham, Switzerland, 2018; pp. 159–180. [Google Scholar]
- Von Braun, W.; White, H.J. The Mars Project; University of Illinois Press: Champaign, IL, USA, 1953. [Google Scholar]
- Cockell, C.S. Trajectories of martian habitability. Astrobiology 2014, 14. [Google Scholar] [CrossRef]
- Vago, J.L.; Westall, F.; Coates, A.J.; Jaumann, R.; Korablev, O.; Ciarletti, V.; Mitrofanov, I.; Josset, J.-L.; De Sanctis, M.C.; Bibring, J.-P. Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 2017, 17, 471–510. [Google Scholar] [CrossRef] [Green Version]
- Cockell, C.S. Astrobiology: Understanding Life in the Universe; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Lingam, M.; Loeb, A. Life in the Cosmos: From Biosignatures to Technosignatures; Harvard University Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Mukundan, A.; Wang, H.-C. The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars. Universe 2022, 8, 550. [Google Scholar] [CrossRef]
- Horne, W.D.; Hastrup, R.; Cesarone, R. Telecommunications for Mars Rovers and Robotic Mission. Space Technol. 1997, 17, 205–213. [Google Scholar] [CrossRef]
- Mathers, N.; Goktogen, A.; Rankin, J.; Anderson, M. Robotic mission to mars: Hands-on, minds-on, web-based learning. Acta Astronaut. 2012, 80, 124–131. [Google Scholar] [CrossRef]
- Zubrin, R. A comparison of approaches for the Mars Sample Return Mission. In Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996; p. 489. [Google Scholar]
- Cabrol, N.A. The coevolution of life and environment on Mars: An ecosystem perspective on the robotic exploration of biosignatures. Astrobiology 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Olsson-Francis, K.; Doran, P.T.; Ilyin, V.; Raulin, F.; Rettberg, P.; Kminek, G.; Mier, M.-P.Z.; Coustenis, A.; Hedman, N.; Shehhi, O.A.; et al. The COSPAR Planetary Protection Policy for robotic missions to Mars: A review of current scientific knowledge and future perspectives. Life Sci. Space Res. 2023, 36, 27–35. [Google Scholar] [CrossRef]
- Seedhouse, E. Starship. In SpaceX; Springer: Cham, Switzerland, 2022; pp. 171–188. [Google Scholar]
- Palmer, C. SpaceX Starship Lands on Earth, but Manned Missions to Mars Will Require More. Engineering 2021, 7, 1345–1347. [Google Scholar] [CrossRef]
- Haqq-Misra, J. Sovereign Mars: Transforming Our Values through Space Settlement; University Press of Kansas: Lawrence, KS, USA, 2022. [Google Scholar]
- Zakrzewska-Bielawska, A. Perceived mutual impact of strategy and organizational structure: Findings from the high-technology enterprises. J. Manag. Organ. 2016, 22, 599–622. [Google Scholar] [CrossRef] [Green Version]
- Yabarow, M.M.; Muathe, S.M. Organisational Structure and Strategy Implementation: Empirical Evidence from Oil Marketing Companies in Kenya. Int. J. Manag. Appl. Res. 2020, 7, 42–54. [Google Scholar]
- Biswal, M.; Kumar, M.; Gomez-Fernandez, D.; Das, N.B.; Kumar, V.R. Design Study and Validation of Mars Underground Habitat for Human Settlement on Mars. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual Event, 9–11 August 2021; p. 3725. [Google Scholar]
- Petrov, G.I. A Permanent Settlement on Mars: The First Cut in the Land of a New Frontier. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2004. [Google Scholar]
- Noeker, M. ESS: A Settlement Site Selection Tool for a Human Mars Base. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
- Wamelink, W. The Ideal Settlement Site on Mars—Hotspots If You Asked a Crop; Wageningen University & Research: Wageningen, The Netherlands, 2018; Volume 2023. [Google Scholar]
- Hargitai, H. Mars Climate Zone Map Based On TES Data. In Proceedings of the 41st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; p. 1199. [Google Scholar]
- Goudge, T.A.; Mustard, J.F.; Head, J.W.; Fassett, C.I.; Wiseman, S.M. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. J. Geophys. Res. Planets 2015, 120, 775–808. [Google Scholar] [CrossRef]
- Mustard, J.; Poulet, F.; Head, J.; Mangold, N.; Bibring, J.P.; Pelkey, S.; Fassett, C.; Langevin, Y.; Neukum, G. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. Planets 2007, 112, E08S03. [Google Scholar] [CrossRef]
- Wiens, R.C.; Udry, A.; Beyssac, O.; Quantin-Nataf, C.; Mangold, N.; Cousin, A.; Mandon, L.; Bosak, T.; Forni, O.; Mclennan, S.M. Compositionally and density stratified igneous terrain in Jezero crater, Mars. Sci. Adv. 2022, 8, eabo3399. [Google Scholar] [CrossRef]
- Mellon, M.T.; Sizemore, H.G. The history of ground ice at Jezero Crater Mars and other past, present, and future landing sites. Icarus 2022, 371, 114667. [Google Scholar] [CrossRef]
- Sun, V.Z.; Stack, K.M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars; US Geological Survey: Reston, VA, USA, 2020.
- Tarnas, J.; Mustard, J.; Lin, H.; Goudge, T.; Amador, E.; Bramble, M.; Kremer, C.; Zhang, X.; Itoh, Y.; Parente, M. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 2019, 46, 12771–12782. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, D.J.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 2009, 114, E00D08. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Sinha, R.K.; Singh, P.; Roy, N.; Mukherjee, S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. Astrobiology 2022, 22, 579–597. [Google Scholar] [CrossRef]
- Brown, A.J.; Viviano, C.E.; Goudge, T.A. Olivine-carbonate mineralogy of the Jezero crater region. J. Geophys. Res. Planets 2020, 125, e2019JE006011. [Google Scholar] [CrossRef] [Green Version]
- Horgan, B.H.N.; Anderson, R.B.; Dromart, G.; Amador, E.S.; Rice, M.S. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 2020, 339, 113526. [Google Scholar] [CrossRef]
- Tarnas, J.; Stack, K.; Parente, M.; Koeppel, A.; Mustard, J.; Moore, K.; Horgan, B.; Seelos, F.; Cloutis, E.; Kelemen, P. Characteristics, origins, and biosignature preservation potential of carbonate-bearing rocks within and outside of Jezero crater. J. Geophys. Res. Planets 2021, 126, e2021JE006898. [Google Scholar] [CrossRef]
- Yen, A.S.; Mittlefehldt, D.W.; McLennan, S.M.; Gellert, R.; Bell III, J.F.; McSween, H., Jr.; Ming, D.W.; McCoy, T.J.; Morris, R.V.; Golombek, M. Nickel on Mars: Constraints on meteoritic material at the surface. J. Geophys. Res. Planets 2006, 111, E12S11. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.T.; Joy, S.; Yu, Y.; Johnson, C.; Mittelholz, A.; Langlais, B.; Chi, P.; Fillingim, M.; Smrekar, S.; Banerdt, B. The Martian Magnetic Field as Seen by InSight. In Proceedings of the EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019. [Google Scholar]
- Lagain, A.; Benedix, G.; Servis, K.; Baratoux, D.; Doucet, L.; Rajšic, A.; Devillepoix, H.; Bland, P.; Towner, M.; Sansom, E. The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nat. Commun. 2021, 12, 6352. [Google Scholar] [CrossRef]
- Mangold, N.; Gupta, S.; Gasnault, O.; Dromart, G.; Tarnas, J.; Sholes, S.; Horgan, B.; Quantin-Nataf, C.; Brown, A.; Le Mouélic, S. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 2021, 374, 711–717. [Google Scholar] [CrossRef]
- Stack, K.M.; Williams, N.R.; Calef, F.; Sun, V.Z.; Williford, K.H.; Farley, K.A.; Eide, S.; Flannery, D.; Hughes, C.; Jacob, S.R. Photogeologic map of the perseverance rover field site in Jezero Crater constructed by the Mars 2020 Science Team. Space Sci. Rev. 2020, 216, 127. [Google Scholar] [CrossRef]
- Baucon, A.; de Carvalho, C.N.; Briguglio, A.; Piazza, M.; Felletti, F. A predictive model for the ichnological suitability of the Jezero crater, Mars: Searching for fossilized traces of life-substrate interactions in the 2020 Rover Mission Landing Site. PeerJ 2021, 9, e11784. [Google Scholar] [CrossRef]
- Lapôtre, M.G.; Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 2020, 1, e2019AV000141. [Google Scholar] [CrossRef] [Green Version]
- Zastrow, A.M.; Glotch, T.D. Distinct carbonate lithologies in Jezero crater, Mars. Geophys. Res. Lett. 2021, 48, e2020GL092365. [Google Scholar] [CrossRef]
- Mukundan, A.; Patel, A.; Saraswat, K.D.; Tomar, A.; Kuhn, T. Kalam Rover. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1047. [Google Scholar]
- Mukundan, A.; Wang, H.-C. Simplified Approach to Detect Satellite Maneuvers Using TLE Data and Simplified Perturbation Model Utilizing Orbital Element Variation. Appl. Sci. 2021, 11, 10181. [Google Scholar] [CrossRef]
- Coale, A.J. Excess female mortality and the balance of the sexes in the population: An estimate of the number of “missing females”. Popul. Dev. Rev. 1991, 17, 517–523. [Google Scholar] [CrossRef]
- Hesketh, T.; Xing, Z.W. Abnormal sex ratios in human populations: Causes and consequences. Proc. Natl. Acad. Sci. USA 2006, 103, 13271–13275. [Google Scholar] [CrossRef] [Green Version]
- Fries, M.D.; Lee, C.; Bhartia, R.; Razzell Hollis, J.; Beegle, L.W.; Uckert, K.; Graff, T.G.; Abbey, W.; Bailey, Z.; Berger, E.L. The SHERLOC calibration target on the Mars 2020 Perseverance rover: Design, operations, outreach, and future human exploration functions. Space Sci. Rev. 2022, 218, 46. [Google Scholar] [CrossRef]
- Fries, M.; Alred, J.; Holland-Hunt, S.; Jakubek, R.; Loo, J.; Marecki, E.; Sico, M. Mars Space Suit Materials Testing Using SHERLOC Calibration Target Data: The Max-CF Project. In Proceedings of the 53rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2022. [Google Scholar]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of Early Esophageal Cancer by Semantic Segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef]
- Hsiao, Y.-P.; Mukundan, A.; Chen, W.-C.; Wu, M.-T.; Hsieh, S.-C.; Wang, H.-C. Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis. Biosensors 2022, 12, 405. [Google Scholar] [CrossRef]
- Lee, C.-H.; Mukundan, A.; Chang, S.-C.; Wang, Y.-L.; Lu, S.-H.; Huang, Y.-C.; Wang, H.-C. Comparative Analysis of Stress and Deformation between One-Fenced and Three-Fenced Dental Implants Using Finite Element Analysis. J. Clin. Med. 2021, 10, 3986. [Google Scholar] [CrossRef]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Growth Mechanism of Periodic-Structured MoS2 by Transmission Electron Microscopy. Nanomaterials 2022, 12, 135. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Hsiao, Y.-P.; Mukundan, A.; Tsao, Y.-M.; Chang, W.-Y.; Wang, H.-C. Classification of Skin Cancer Using Novel Hyperspectral Imaging Engineering via YOLOv5. J. Clin. Med. 2023, 12, 1134. [Google Scholar] [CrossRef]
- Chen, C.-W.; Tseng, Y.-S.; Mukundan, A.; Wang, H.-C. Air Pollution: Sensitive Detection of PM2.5 and PM10 Concentration Using Hyperspectral Imaging. Appl. Sci. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef]
- Kos, L. The Human Mars Mission: Transportation Assessment. AIP Conf. Proc. 1998, 420, 1206–1211. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P.; Gattacceca, J.; Chevrier, V.; Mathé, P.; Menvielle, M.; Team, M.S. Magnetism, iron minerals, and life on Mars. Astrobiology 2006, 6, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Zaccardi, F.; Toto, E.; Santonicola, M.G.; Laurenzi, S. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut. 2022, 190, 1–13. [Google Scholar] [CrossRef]
- Saggin, B.; Alberti, E.; Comolli, L.; Tarabini, M.; Bellucci, G.; Fonti, S. MIMA, a miniaturized infrared spectrometer for Mars ground exploration: Part III. Thermomechanical design. In Sensors, Systems, and Next-Generation Satellites XI, Proceedings of the SPIE Remote Sensing, 2007, Florence, Italy, 17–20 September 2007; Habib, S., Meynart, R., Neeck, S.P., Shimoda, H., Eds.; SPIE: Bellingham, WA, USA, 2007; pp. 473–482. [Google Scholar]
- Mojzsis, S.J.; Arrhenius, G. Phosphates and carbon on Mars: Exobiological implications and sample return considerations. J. Geophys. Res. Planets 1998, 103, 28495–28511. [Google Scholar] [CrossRef]
- Lanza, N.L.; Wiens, R.C.; Arvidson, R.E.; Clark, B.C.; Fischer, W.W.; Gellert, R.; Grotzinger, J.P.; Hurowitz, J.A.; McLennan, S.M.; Morris, R.V. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys. Res. Lett. 2016, 43, 7398–7407. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, L.C.; Wilson, J.W.; Kim, M.H.; Cucinotta, F.A. Radiation exposure for human Mars exploration. Health Phys. 2000, 79, 515–525. [Google Scholar] [CrossRef]
- Landis, G.A. Meteoritic steel as a construction resource on Mars. Acta Astronaut. 2009, 64, 183–187. [Google Scholar] [CrossRef]
- Zubrin, R.; Muscatello, T.; Birnbaum, B.; Caviezel, K.; Snyder, G.; Berggren, M. Progress in Mars ISRU technology. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002; p. 461. [Google Scholar]
- Clark, D.; Clark, D. In-situ propellant production on Mars-A Sabatier/electrolysis demonstration plant. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997; p. 2764. [Google Scholar]
- Shima, A.; Sakurai, M.; Sone, Y.; Ohnishi, M.; Abe, T. Development of a CO2 reduction catalyst for the Sabatier reaction. In Proceedings of the 42nd International Conference on Environmental Systems, San Diego, CA, USA, 15–19 July 2012; p. 3552. [Google Scholar]
- Jones, H.W. Much lower launch costs make resupply cheaper than recycling for space life support. In Proceedings of the International Conference on Environmental Systems (ICES-2017), Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Myles, P.S.; Bellomo, R.; Corcoran, T.; Forbes, A.; Peyton, P.; Story, D.; Christophi, C.; Leslie, K.; McGuinness, S.; Parke, R. Restrictive versus liberal fluid therapy for major abdominal surgery. N. Engl. J. Med. 2018, 378, 2263–2274. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Andrejko, D.; Kiczorowski, P.; Antoszkiewicz, Z.; Zając, M.; Winiarska-Mieczan, A.; Bąkowski, M. Comparative analysis of selected bioactive components (fatty acids, tocopherols, xanthophyll, lycopene, phenols) and basic nutrients in raw and thermally processed camelina, sunflower, and flax seeds (Camelina sativa L. Crantz, Helianthus L., and Linum L.). J. Food Sci. Technol. 2019, 56, 4296–4310. [Google Scholar] [CrossRef] [Green Version]
- Black, A.K.; Allen, L.H.; Pelto, G.H.; de Mata, M.P.; Chávez, A. Iron, vitamin B-12 and folate status in Mexico: Associated factors in men and women and during pregnancy and lactation. J. Nutr. 1994, 124, 1179–1188. [Google Scholar] [CrossRef]
- DeMattio, D.; McGuire, N.; Rosa Polonia, R.A.; Hufendick, B.T. Project HOME Hydroponic Operations for Mars Exploration. Beyond Undergrad. Res. J. 2020, 4, 5. [Google Scholar]
- Lindström, K.; Mousavi, S.A. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol. 2020, 13, 1314–1335. [Google Scholar] [CrossRef] [Green Version]
- Oze, C.; Beisel, J.; Dabsys, E.; Dall, J.; North, G.; Scott, A.; Lopez, A.M.; Holmes, R.; Fendorf, S. Perchlorate and agriculture on Mars. Soil Syst. 2021, 5, 37. [Google Scholar] [CrossRef]
- Elsenousy, A.; Hanley, J.; Chevrier, V.F. Effect of evaporation and freezing on the salt paragenesis and habitability of brines at the Phoenix landing site. Earth Planet. Sci. Lett. 2015, 421, 39–46. [Google Scholar] [CrossRef]
- Raut, K.H.; Shendge, A.; Chaudhari, J. Recent Advancement in Battery Energy Storage System for Launch Vehicle. In Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid; Bohre, A.K., Chaturvedi, P., Kolhe, M.L., Singh, S.N., Eds.; Springer: Cham, Switzerland, 2022; pp. 931–955. [Google Scholar]
- Gibson, M.; Schmitz, P. Higher Power Design Concepts for NASA’s Kilopower Reactor. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2022; pp. 1–9. [Google Scholar]
- Poston, D.I.; Gibson, M.; McClure, P. Kilopower reactors for potential space exploration missions. In Proceedings of the Nuclear and Emerging Technologies for Space (NETS-2013), Albuquerque, NM, USA, 25–28 February 2013. [Google Scholar]
- Hartwick, V.L.; Toon, O.B.; Lundquist, J.K.; Pierpaoli, O.A.; Kahre, M.A. Assessment of wind energy resource potential for future human missions to Mars. Nat. Astron. 2022. [Google Scholar] [CrossRef]
- Kass, D.; Schofield, J.; Kleinböhl, A.; McCleese, D.; Heavens, N.; Shirley, J.; Steele, L. Mars Climate Sounder observation of Mars’ 2018 global dust storm. Geophys. Res. Lett. 2020, 47, e2019GL083931. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, L.; Wei, Y.; Fu, L.-Y. Detection of seismic events on Mars: A lunar perspective. Earth Planet. Phys. 2019, 3, 290–297. [Google Scholar] [CrossRef]
- Mishra, R.; Militky, J.; Venkataraman, M. Nanoporous materials. In Nanotechnology in Textiles; Mishra, R., Militky, J., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 311–353. [Google Scholar] [CrossRef]
- Strauss, D. The Planet Mars: A History of Observation and Discovery by William Sheehan. Isis 1997, 88, 324. [Google Scholar] [CrossRef]
- Battalio, M.; Wang, H. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Korablev, O.; Daerden, F.; Aoki, S.; Thomas, I.R.; Altieri, F.; López-Valverde, M.; Villanueva, G.; Liuzzi, G.; Smith, M.D. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 2019, 568, 521–525. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Erkoreka, A.; Hernández-Bernal, J.; del Río-Gaztelurrutia, T.; García-Morales, J.; Ordoñez-Etxeberría, I.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.; Tirsch, D. Cellular patterns and dry convection in textured dust storms at the edge of Mars North Polar Cap. Icarus 2022, 387, 115183. [Google Scholar] [CrossRef]
- Rossi, L.; Vals, M.; Montmessin, F.; Forget, F.; Millour, E.; Fedorova, A.; Trokhimovskiy, A.; Korablev, O. The effect of the Martian 2018 global dust storm on HDO as predicted by a Mars Global Climate Model. Geophys. Res. Lett. 2021, 48, e2020GL090962. [Google Scholar] [CrossRef]
- Wang, R.; Xu, B.-B.; Wang, J.; Wang, X.L.; Yao, Y.-F. Selective hydrogen–deuterium exchange in graphitic carbon nitrides: Probing the active sites for photocatalytic water splitting by solid-state NMR. J. Mater. Chem. A 2021, 9, 3985–3994. [Google Scholar] [CrossRef]
- Furusawa, K.; Nago, T.; Ueda, M.; Matsushima, H. Effect of water vapor on deuterium separation by a polymer electrolyte fuel cell. Int. J. Hydrogen Energy 2022, 47, 36248–36253. [Google Scholar] [CrossRef]
- Bonner, P.; James, C.M. A Proposal For a Generalised Asteroid Mining Mission. In ASCEND; Nevada Virtual Academy: Las Vegas, NV, USA, 2021; p. 4018. [Google Scholar]
- Ganatra, D.; Modi, N. Asteroid mining and its legal implications. J. Space Law 2015, 40, 81. [Google Scholar]
- Cox, A. Live broadcasting, gate revenue, and football club performance: Some evidence. Int. J. Econ. Bus. 2012, 19, 75–98. [Google Scholar] [CrossRef]
- Solberg, H.-A.; Gratton, C. Broadcasting the Olympics. In Managing the Olympics; Springer: Cham, Switzerland, 2013; pp. 147–164. [Google Scholar]
- Park, S.-Y.; Seywald, H.; Krizan, S.A.; Stillwagen, F.H. Mission design for Human Outer Planet Exploration (HOPE) using a magnetoplasma spacecraft. Planet. Space Sci. 2006, 54, 737–749. [Google Scholar] [CrossRef]
- Troutman, P.A.; Bethke, K.; Stillwagen, F.; Caldwell, D.L., Jr.; Manvi, R.; Strickland, C.; Krizan, S.A. Revolutionary concepts for human outer planet exploration (HOPE). AIP Conf. Proc. 2003, 654, 821–828. [Google Scholar]
- Huang, S.-Y.; Mukundan, A.; Tsao, Y.-M.; Kim, Y.; Lin, F.-C.; Wang, H.-C. Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors 2022, 22, 7308. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Lin, F.-C.; Wang, H.-C. Portable and low-cost hologram verification module using a snapshot-based hyperspectral imaging algorithm. Sci. Rep. 2022, 12, 18475. [Google Scholar] [CrossRef]
- Mukundan, A.; Wang, H.-C.; Tsao, Y.-M. A Novel Multipurpose Snapshot Hyperspectral Imager used to Verify Security Hologram. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia, 27–28 October 2022; pp. 1–3. [Google Scholar]
Scheme | Total Duration | Frequency (1 Year) | Cost/Tourist | Ticket/Tourist | Total Revenue (1 Year) |
---|---|---|---|---|---|
A | 95 days | 4 | $5,135,463 | $19 million | $5.5 billion |
B | 160 days | 4 | $8,824,496 | $16 million | $2.87 billion |
C | 320 days | 4 | $9434 | $13 million | $2.85 billion |
D | 450 days | 4 | $6,926,119 | $10 million | $1.23 billion |
Total Revenue generated in a year ($) | $12.5 billion |
Total D Exported from Mars | 87,989.33 kg |
---|---|
Transportation costs | $133.32 million |
Cost of D on Earth | $10,000 |
Total cost of D on Earth | $879.89 million |
Total Revenue generated in 2 years | $746.58 million |
Platinum Extracted | 233.75 Tons |
---|---|
Cost of Platinum on Earth | $26,500 per kg |
Cost of Transport per year | $386.37 million |
Estimated cost of payload from asteroid in a year | $6.19 billion |
Total Revenue generated in a year | $5.81 billion |
Arrival of New Dvarakans | 5 |
---|---|
Tourism (in 6 yrs) | 66 |
Asteroid Mining (in 6 yrs) | 4 |
Total events broadcasted in first 6 yrs | 75 |
Revenue generated per event (state of the art) | $183 million |
Revenue generated in 6 yrs | $13.75 billion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukundan, A.; Patel, A.; Shastri, B.; Bhatt, H.; Phen, A.; Wang, H.-C. The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance. Aerospace 2023, 10, 265. https://doi.org/10.3390/aerospace10030265
Mukundan A, Patel A, Shastri B, Bhatt H, Phen A, Wang H-C. The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance. Aerospace. 2023; 10(3):265. https://doi.org/10.3390/aerospace10030265
Chicago/Turabian StyleMukundan, Arvind, Akash Patel, Bharadwaj Shastri, Heeral Bhatt, Alice Phen, and Hsiang-Chen Wang. 2023. "The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance" Aerospace 10, no. 3: 265. https://doi.org/10.3390/aerospace10030265
APA StyleMukundan, A., Patel, A., Shastri, B., Bhatt, H., Phen, A., & Wang, H. -C. (2023). The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance. Aerospace, 10(3), 265. https://doi.org/10.3390/aerospace10030265