The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives
Abstract
1. Introduction
2. Reducing Carbon Emissions in Aviation in Theory and Practice
3. The European Commission’s Proposal for a SAF Blending Mandate
3.1. Outline
3.2. Discussion of SAF Availability
3.3. Economic and Competitive Impacts
4. Further Design Options for the Introduction of SAF
4.1. Book-and-Claim Approach
4.2. Use of Aviation-Specific State Revenues for Subsidizing SAF Introduction
5. Alternatives to SAF
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 24 February 2023).
- Enerdata. World Energy & Climate Statistics—Yearbook 2022: Share of Renewables in Electricity Production. Available online: https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html (accessed on 16 January 2023).
- Burch, I.; Gilchrist, J. Survey of Global Activity to Phase Out Internal Combustion Engine Vehicles: March 2020 Revision. 2020. Available online: https://theclimatecenter.org/wp-content/uploads/2020/03/Survey-on-Global-Activities-to-Phase-Out-ICE-Vehicles-update-3.18.20-1.pdf (accessed on 16 January 2023).
- Gillingham, K.; Stock, J.H. The Cost of Reducing Greenhouse Gas Emissions. J. Econ. Perspect. 2018, 32, 53–72. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Sustainable Aviation Fuel: Review of Technical Pathways. 2020. Available online: https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf (accessed on 24 February 2023).
- Viswanathan, V.; Epstein, A.H.; Chiang, Y.-M.; Takeuchi, E.; Bradley, M.; Langford, J.; Winter, M. The challenges and opportunities of battery-powered flight. Nature 2022, 601, 519–525. [Google Scholar] [CrossRef]
- Noland, J.K. Hydrogen Electric Airplanes: A disruptive technological path to clean up the aviation sector. IEEE Electrific. Mag. 2021, 9, 92–102. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: New Rules Agreed on Applying the EU Emissions Trading System in the Aviation Sector: Press Release IP/22/7609. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7609 (accessed on 16 January 2023).
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- Teoh, R.; Schumann, U.; Voigt, C.; Schripp, T.; Shapiro, M.; Engberg, Z.; Molloy, J.; Koudis, G.; Stettler, M.E.J. Targeted Use of Sustainable Aviation Fuel to Maximize Climate Benefits. Environ. Sci. Technol. 2022, 56, 17246–17255. [Google Scholar] [CrossRef]
- Braun-Unkhoff, M.; Riedel, U.; Wahl, C. About the emissions of alternative jet fuels. CEAS Aeronaut. J. 2017, 8, 167–180. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport: COM(2021) 561 Final. 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:00c59688-e577-11eb-a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 24 February 2023).
- Pigou, A.C. The Economics of Welfare; MacMillan: London, UK, 1920. [Google Scholar]
- Coase, R.H. The Problem of Social Cost. J. Law Econ. 2013, 56, 837–877. [Google Scholar] [CrossRef]
- Verbruggen, A. Pricing Carbon Emissions: Economic Reality and Utopia; Routledge Taylor & Francis Group: Abingdon, Oxon, UK; Routledge Taylor & Francis Group: New York, NY, USA, 2021; ISBN 1000415449. [Google Scholar]
- Weitzman, M.L. Prices vs. Quantities. Rev. Econ. Stud. 1974, 41, 477–491. [Google Scholar] [CrossRef]
- Stavins, R.N. The Future of US Carbon-Pricing Policy. Environ. Energy Policy Econ. 2020, 1, 8–64. [Google Scholar] [CrossRef]
- European Energy Exchange. EEX Emissions Market/Primary Market Auction: EUA & EUAA Auction Results 2022. 2022. Available online: https://public.eex-group.com/eex/eua-auction-report/emission-spot-primary-market-auction-report-2022-data.xlsx (accessed on 17 September 2022).
- Federal Government of Germany. CO2—Carbon Dioxide Has Its Price: Incentives for Fewer CO2—Carbon Dioxide Emissions. Available online: https://www.bundesregierung.de/breg-en/issues/climate-action/fewer-co2-emissions-1797122 (accessed on 17 September 2022).
- OECD. Pricing Greenhouse Gas Emissions Country Notes: Carbon Pricing in the Netherlands. 2022. Available online: https://www.oecd.org/tax/tax-policy/carbon-pricing-netherlands.pdf (accessed on 7 February 2023).
- OECD. Pricing Greenhouse Gas Emissions Country Notes: Carbon Pricing in Spain. 2022. Available online: https://www.oecd.org/tax/tax-policy/carbon-pricing-spain.pdf (accessed on 7 February 2023).
- Murphy, A. Why ICAO and Corsia Cannot Deliver on Climate: A Threat to Europe’s Climate Ambition. 2019. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2019_09_Corsia_assessement_final.pdf (accessed on 24 February 2023).
- Wozny, F.; Grimme, W.; Maertens, S.; Scheelhaase, J. CORSIA—A Feasible Second Best Solution? Appl. Sci. 2022, 12, 7054. [Google Scholar] [CrossRef]
- Schneider, L.; Wissner, N. Fit for Purpose? Key Issues for the First Review of CORSIA, Berlin. 2022. Available online: https://www.oeko.de/fileadmin/oekodoc/Key-issues-for-first-review-of-CORSIA.pdf (accessed on 24 February 2023).
- Broekhoff, D.; Spalding-Fecher, R. Assessing crediting scheme standards and practices for ensuring unit quality under the Paris agreement. Carbon Manag. 2021, 12, 635–648. [Google Scholar] [CrossRef]
- Stay Grounded. Positionspapier. Available online: https://stay-grounded.org/position-paper/position-paper-de/ (accessed on 18 January 2023).
- Robin Wood. Züge statt Flüge: Umweltorganisationen Fordern Sofortiges Aus für Kurzstreckenflüge. Press Release. Available online: https://www.robinwood.de/pressemitteilungen/z%C3%BCge-statt-fl%C3%BCge (accessed on 18 January 2023).
- Seber, G.; Escobar, N.; Valin, H.; Malina, R. Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils. Renew. Sustain. Energy Rev. 2022, 170, 112945. [Google Scholar] [CrossRef]
- ICAO. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels. Available online: https://www.icao.int/environmental-protection/CORSIA/Documents/CORSIA_Eligible_Fuels/ICAO%20document%2006%20-%20Default%20Life%20Cycle%20Emissions%20-%20June%202022.pdf (accessed on 7 February 2023).
- Gelhausen, M.C. Airport Capacity Constraints and Strategies for Mitigation: A Global Perspective; Elsevier Science & Technology: Saint Louis, MO, USA, 2020; ISBN 9780128126578. [Google Scholar]
- Gelhausen, M.C.; Grimme, W.; Junior, A.; Lois, C.; Berster, P. Clean Sky 2 Technology Evaluator—Results of the First Air Transport System Level Assessments. Aerospace 2022, 9, 204. [Google Scholar] [CrossRef]
- Grimme, W. Luftverkehrsszenarien in BEniVer: 2. Statuskonferenz Energiewende im Verkehr. 2022. Available online: https://elib.dlr.de/187415/ (accessed on 24 February 2023).
- ICAO. Conversion Processes. Available online: https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx (accessed on 7 February 2023).
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 111564. [Google Scholar] [CrossRef]
- OMV. Sustainable Aviation Fuels—Wohin Geht Die Reise? Available online: https://www.omv.com/de/blog/sustainable-aviation-fuels-wohin-geht-die-reise (accessed on 6 January 2023).
- Matsuura, S. Waste Cooking Oil Prices Soar on Demand from Airline Industry. Available online: https://www.asahi.com/ajw/articles/14704414 (accessed on 6 January 2023).
- Ahrens, S. Monatlicher Preis für Sonnenblumenöl im Globalen Handel von Dezember 2019 bis Dezember 2022. Available online: https://de.statista.com/statistik/daten/studie/1296737/umfrage/monatlicher-preis-sonnenblumenoel/#:~:text=Monatlicher%20Preis%20f%C3%BCr%20Sonnenblumen%C3%B6l%20im%20globalen%20Handel%20bis%20Dezember%202022&text=Im%20Dezember%202022%20lag%20der,dem%20April%202022%20wieder%20gesunken. (accessed on 6 January 2023).
- O’Malley, J.; Pavlenko, N.; Searle, S. Estimating Sustainable Aviation Fuel Feedstock Availability to Meet Growing European Union Demand; Working Paper 2021-13. 2021. Available online: https://theicct.org/sites/default/files/publications/Sustainable-aviation-fuel-feedstock-eu-mar2021.pdf (accessed on 24 February 2023).
- Brosowski, A.; Krause, T.; Mantau, U.; Mahro, B.; Noke, A.; Richter, F.; Raussen, T.; Bischof, R.; Hering, T.; Blanke, C.; et al. How to measure the impact of biogenic residues, wastes and by-products: Development of a national resource monitoring based on the example of Germany. Biomass Bioenergy 2019, 127, 105275. [Google Scholar] [CrossRef]
- Wang, W.-C.; Tao, L. Bio-jet fuel conversion technologies. Renew. Sustain. Energy Rev. 2016, 53, 801–822. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- EUROSTAT. Electricity Production, Consumption and Market Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview (accessed on 24 February 2023).
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe: COM(2020) 301 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=EN (accessed on 13 February 2023).
- Drünert, S.; Neuling, U.; Zitscher, T.; Kaltschmitt, M. Power-to-Liquid fuels for aviation—Processes, resources and supply potential under German conditions. Appl. Energy 2020, 277, 115578. [Google Scholar] [CrossRef]
- Giannelos, G.; Humphris-Bach, A.; Davies, A.; Baxter, B.; Cames, M.; Kasten, P.; Siskos, P.; Tsiropoulos, I.; Kalokyris, T.; Statharas, S. Study Supporting the Impact Assessment of the ReFuelEU Aviation Initiative: Final Report; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-41016-4. [Google Scholar]
- Air France KLM Group. Universal Registration Document 2019 Including the Annual Financial Report. Available online: https://www.airfranceklm.com/sites/default/files/publications_en/document/universalregistrationdocument2019va.pdf (accessed on 6 February 2023).
- EasyJet plc. Annual Report and Accounts 2019: Resilient Focused Data Driven. Available online: https://corporate.easyjet.com/~/media/Files/E/Easyjet/pdf/investors/results-centre/2019/eas040-annual-report-2019-web.pdf (accessed on 6 February 2023).
- IAG. Full Year Results Announcement. Available online: https://www.iairgroup.com/~/media/Files/I/IAG/press-releases/english/2020/Full%20year%20results%20release%20for%20the%20year%20to%20December%2031%202019.pdf (accessed on 6 February 2023).
- Lufthansa Group. Annual Report 2019: Creating Sustainable Value. Available online: https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/financial-reports/annual-reports/LH-AR-2019-e.pdf (accessed on 6 February 2023).
- Ryanair Holdings plc. Form 20-F. Available online: https://investor.ryanair.com/wp-content/uploads/2020/07/Ryanair-20-F-2020.pdf (accessed on 6 February 2023).
- IATA. Net-Zero Carbon Emissions by 2050. Press Release No: 66. Available online: https://www.iata.org/en/pressroom/pressroom-archive/2021-releases/2021-10-04-03/ (accessed on 24 February 2023).
- Adler, M.; Boonekamp, T.; Konijn, S. Aviation Fit for 55: Ticket Prices, Demand and Carbon Leakage. Research Report, Amsterdam. 2022. Available online: https://www.seo.nl/wp-content/uploads/2022/03/2022-16-Aviation-fit-for-55.pdf (accessed on 18 January 2023).
- Oxera. Assessment of the Impact of the Fit for 55 Policies on Airports: Prepared for ACI EUROPE. 2022. Available online: https://www.oxera.com/wp-content/uploads/2022/06/Impact-assessment-of-Fit-for-55-policies-on-the-aviation-sector_final_080622.pdf (accessed on 18 January 2023).
- Ehlers, T.; Kölker, K.; Lütjens, K. Auswirkungen der Fit-for-55-Instrumente auf die Preise in der Luftfahrt. Wirtschaftsdienst 2022, 102, 801–807. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Power Generation Costs in 2020. 2021. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 24 February 2023).
- Umweltbundesamt. Deutlich Weniger Erneuerbarer Strom im Jahr 2021: Nutzung von Biokraftstoffen sinkt Ebenfalls; Deutliches Plus nur bei Erneuerbarer Wärme. Press Release 50/2021. Available online: https://www.umweltbundesamt.de/presse/pressemitteilungen/deutlich-weniger-erneuerbarer-strom-im-jahr-2021 (accessed on 24 February 2023).
- United States Congress. Inflation Reduction Act of 2022: H.R.5376. 2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/5376/text (accessed on 24 February 2023).
- Kharina, A.; Rutherford, D. Fuel Efficiency Trends for New Commercial Jet Aircraft: 1960 to 2014: White Paper, Washington, DC. 2015. Available online: https://theicct.org/sites/default/files/publications/ICCT_Aircraft-FE-Trends_20150902.pdf (accessed on 16 January 2023).
- Clean Sky 2 Joint Undertaking. Clean Sky 2 Technology Evaluator First Global Assessment: Technical Report. 2021. Available online: https://www.clean-aviation.eu/sites/default/files/2021-09/TE-FGA-TR_en.pdf (accessed on 16 January 2023).
- Silberhorn, D.; Hartmann, J.; Dzikus, N.M.; Atanasov, G.; Zill, T.; Brand, U.; Gomez Trillos, J.C.; Oswald, M.; Vogt, T.; Wilken, D.; et al. The Air-Vehicle as a Complex System of Air Transport Energy Systems. In AIAA AVIATION 2020 FORUM, Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; ISBN 978-1-62410-598-2. [Google Scholar]
- Grimme, W.; Braun, M. Estimation of potential hydrogen demand and CO2 mitigation in global passenger air transport by the year 2050. Transp. Res. Procedia 2022, 65, 24–33. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 63002. [Google Scholar] [CrossRef]
- EUROCONTROL. Aviation Outlook 2050: Main Report—STATFOR Doc 683 08/04/2022. 2022. Available online: https://www.eurocontrol.int/archive_download/all/node/13448 (accessed on 13 February 2023).
- Air Transport Action Group. Waypoint 2050: Balancing Growth in Connectivity with a Comprehensive Global Air Transport Response to the Climate Emergency: A Vision of Net-Zero Aviation by Mid-Century. Second Edition September 2021, Geneva. 2021. Available online: https://aviationbenefits.org/media/167417/w2050_v2021_27sept_full.pdf (accessed on 17 February 2023).
Feedstock | Conversion Pathway | Estimated Lifecycle CO2-eq Emissions (g/MJ Jet Fuel) | Lifecycle CO2 Reduction Potential vs. Fossil Fuel |
---|---|---|---|
Agricultural residues | FT | 7.7 | −90.8% |
Forestry residues | FT | 8.3 | −90.1% |
Municipal solid waste | FT | 5.2 | −93.8% |
Poplar | FT | 20.8 | −75.1% |
Miscanthus | FT | −2.2 | −102.6% |
Switchgrass | FT | 15.7 | −81.2% |
Tallow | HEFA | 22.5 | −73.1% |
Used Cooking Oil | HEFA | 13.9 | −83.4% |
Palm fatty acid distillate | HEFA | 20.7 | −75.2% |
Corn Oil | HEFA | 17.2 | −79.4% |
Soybean Oil | HEFA | 66.2 | −20.8% |
Rapeseed Oil | HEFA | 73.4 | −12.2% |
Camelina Oil | HEFA | 28.6 | −65.8% |
Agricultural residues | ATJ (Isobutanol) | 29.3 | −65.0% |
Forestry residues | ATJ (Isobutanol) | 23.8 | −71.5% |
Sugarcane | ATJ (Isobutanol) | 33.1 | −60.4% |
Corn grain | ATJ (Isobutanol) | 85.5 | 2.3% |
Miscanthus | ATJ (Isobutanol) | 19.8 | −76.3% |
Switchgrass | ATJ (Isobutanol) | 48.8 | −41.6% |
Molasses | ATJ (Isobutanol) | 36.1 | −56.8% |
Sugarcane | ATJ (Ethanol) | 32.8 | −60.8% |
Corn Grain | ATJ (Ethanol) | 100.6 | 20.3% |
Agricultural residues | ATJ (Ethanol) | 24.6–39.7 | −70.6%–−52.5% |
Forestry residues | ATJ (Ethanol) | 24.9–40.0 | −70.2%–−52.2% |
Miscanthus | ATJ (Ethanol) | 9.3–24.3 | −88.9%–−70.9% |
Switchgrass | ATJ (Ethanol) | 33.7–48.7 | −59.7%–−41.7% |
Waste gases | ATJ (Ethanol) | 29.4–42.4 | −64.8%–−49.8% |
Sugarcane | SIP | 43.9 | −47.5% |
Sugarbeet | SIP | 43.6 | −47.8% |
Conversion Process | Abbreviation | Possible Feedstocks | Maximum Blending Ratio by Volume |
---|---|---|---|
Fischer–Tropsch hydroprocessed synthesized paraffinic kerosene | FT-SPK | Coal, natural gas, biomass | 50% |
Synthesized paraffinic kerosene from hydroprocessed esters and fatty acids | HEFA-SPK | Bio-oils, animal fat, recycled oils | 50% |
Synthesized iso-paraffins from hydroprocessed fermented sugars | SIP | Biomass used for sugar production | 10% |
Synthesized kerosene with aromatics derived by alkylation of light aromatics from non-petroleum sources | FT-SKA | Coal, natural gas, biomass | 50% |
Alcohol to jet synthetic paraffinic kerosene | ATJ-SPK | Biomass from ethanol or isobutanol production | 50% |
Catalytic hydrothermolysis jet fuel | CHJ | Triglycerides such as soybean oil, jatropha oil, camelina oil, carinata oil, and tung oil | 50% |
Synthesized paraffinic kerosene from hydrocarbon-hydroprocessed esters and fatty acids | HC-HEFA-SPK | Algae | 10% |
Co-hydroprocessing of esters and fatty acids in a conventional petroleum refinery | Co-processed HEFA | Fats, oils, and greases (FOG) co-processed with petroleum | 5% |
Co-hydroprocessing of Fischer-Tropsch hydrocarbons in a conventional petroleumrefinery | Co-processed FT | Fischer–Tropsch hydrocarbons co-processed with petroleum | 5% |
Airline/Airline Group | Business Year | Total Costs in Millions | Fuel Costs in Millions | Fuel Cost Share (% of Total Costs) | Operating Profit Margin | Source |
---|---|---|---|---|---|---|
Air France KLM | 2019 | EUR 26,047 | EUR 5511 | 21.2% | 3.2% | [46] |
easyJet | 2018/2019 | GBP 5984 | GBP 1416 | 23.7% | 6.7% | [47] |
IAG | 2019 | GBP 22,221 | GBP 6021 | 27.1% | 13.9% | [48] |
Lufthansa (Network Airlines) | 2019 | EUR 22,132 | EUR 5326 | 24.1% | 7.8% | [49] |
Lufthansa (Eurowings) | 2019 | EUR 4655 | EUR 1054 | 22.6% | −4.0% | [49] |
Ryanair | 2019/2020 | EUR 2762 | 34.2% | 13.3% | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimme, W. The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace 2023, 10, 218. https://doi.org/10.3390/aerospace10030218
Grimme W. The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace. 2023; 10(3):218. https://doi.org/10.3390/aerospace10030218
Chicago/Turabian StyleGrimme, Wolfgang. 2023. "The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives" Aerospace 10, no. 3: 218. https://doi.org/10.3390/aerospace10030218
APA StyleGrimme, W. (2023). The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace, 10(3), 218. https://doi.org/10.3390/aerospace10030218