The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives
Abstract
:1. Introduction
2. Reducing Carbon Emissions in Aviation in Theory and Practice
3. The European Commission’s Proposal for a SAF Blending Mandate
3.1. Outline
3.2. Discussion of SAF Availability
3.3. Economic and Competitive Impacts
4. Further Design Options for the Introduction of SAF
4.1. Book-and-Claim Approach
4.2. Use of Aviation-Specific State Revenues for Subsidizing SAF Introduction
5. Alternatives to SAF
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 24 February 2023).
- Enerdata. World Energy & Climate Statistics—Yearbook 2022: Share of Renewables in Electricity Production. Available online: https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html (accessed on 16 January 2023).
- Burch, I.; Gilchrist, J. Survey of Global Activity to Phase Out Internal Combustion Engine Vehicles: March 2020 Revision. 2020. Available online: https://theclimatecenter.org/wp-content/uploads/2020/03/Survey-on-Global-Activities-to-Phase-Out-ICE-Vehicles-update-3.18.20-1.pdf (accessed on 16 January 2023).
- Gillingham, K.; Stock, J.H. The Cost of Reducing Greenhouse Gas Emissions. J. Econ. Perspect. 2018, 32, 53–72. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy. Sustainable Aviation Fuel: Review of Technical Pathways. 2020. Available online: https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf (accessed on 24 February 2023).
- Viswanathan, V.; Epstein, A.H.; Chiang, Y.-M.; Takeuchi, E.; Bradley, M.; Langford, J.; Winter, M. The challenges and opportunities of battery-powered flight. Nature 2022, 601, 519–525. [Google Scholar] [CrossRef]
- Noland, J.K. Hydrogen Electric Airplanes: A disruptive technological path to clean up the aviation sector. IEEE Electrific. Mag. 2021, 9, 92–102. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: New Rules Agreed on Applying the EU Emissions Trading System in the Aviation Sector: Press Release IP/22/7609. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7609 (accessed on 16 January 2023).
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- Teoh, R.; Schumann, U.; Voigt, C.; Schripp, T.; Shapiro, M.; Engberg, Z.; Molloy, J.; Koudis, G.; Stettler, M.E.J. Targeted Use of Sustainable Aviation Fuel to Maximize Climate Benefits. Environ. Sci. Technol. 2022, 56, 17246–17255. [Google Scholar] [CrossRef]
- Braun-Unkhoff, M.; Riedel, U.; Wahl, C. About the emissions of alternative jet fuels. CEAS Aeronaut. J. 2017, 8, 167–180. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport: COM(2021) 561 Final. 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:00c59688-e577-11eb-a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 24 February 2023).
- Pigou, A.C. The Economics of Welfare; MacMillan: London, UK, 1920. [Google Scholar]
- Coase, R.H. The Problem of Social Cost. J. Law Econ. 2013, 56, 837–877. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, A. Pricing Carbon Emissions: Economic Reality and Utopia; Routledge Taylor & Francis Group: Abingdon, Oxon, UK; Routledge Taylor & Francis Group: New York, NY, USA, 2021; ISBN 1000415449. [Google Scholar]
- Weitzman, M.L. Prices vs. Quantities. Rev. Econ. Stud. 1974, 41, 477–491. [Google Scholar] [CrossRef]
- Stavins, R.N. The Future of US Carbon-Pricing Policy. Environ. Energy Policy Econ. 2020, 1, 8–64. [Google Scholar] [CrossRef]
- European Energy Exchange. EEX Emissions Market/Primary Market Auction: EUA & EUAA Auction Results 2022. 2022. Available online: https://public.eex-group.com/eex/eua-auction-report/emission-spot-primary-market-auction-report-2022-data.xlsx (accessed on 17 September 2022).
- Federal Government of Germany. CO2—Carbon Dioxide Has Its Price: Incentives for Fewer CO2—Carbon Dioxide Emissions. Available online: https://www.bundesregierung.de/breg-en/issues/climate-action/fewer-co2-emissions-1797122 (accessed on 17 September 2022).
- OECD. Pricing Greenhouse Gas Emissions Country Notes: Carbon Pricing in the Netherlands. 2022. Available online: https://www.oecd.org/tax/tax-policy/carbon-pricing-netherlands.pdf (accessed on 7 February 2023).
- OECD. Pricing Greenhouse Gas Emissions Country Notes: Carbon Pricing in Spain. 2022. Available online: https://www.oecd.org/tax/tax-policy/carbon-pricing-spain.pdf (accessed on 7 February 2023).
- Murphy, A. Why ICAO and Corsia Cannot Deliver on Climate: A Threat to Europe’s Climate Ambition. 2019. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2019_09_Corsia_assessement_final.pdf (accessed on 24 February 2023).
- Wozny, F.; Grimme, W.; Maertens, S.; Scheelhaase, J. CORSIA—A Feasible Second Best Solution? Appl. Sci. 2022, 12, 7054. [Google Scholar] [CrossRef]
- Schneider, L.; Wissner, N. Fit for Purpose? Key Issues for the First Review of CORSIA, Berlin. 2022. Available online: https://www.oeko.de/fileadmin/oekodoc/Key-issues-for-first-review-of-CORSIA.pdf (accessed on 24 February 2023).
- Broekhoff, D.; Spalding-Fecher, R. Assessing crediting scheme standards and practices for ensuring unit quality under the Paris agreement. Carbon Manag. 2021, 12, 635–648. [Google Scholar] [CrossRef]
- Stay Grounded. Positionspapier. Available online: https://stay-grounded.org/position-paper/position-paper-de/ (accessed on 18 January 2023).
- Robin Wood. Züge statt Flüge: Umweltorganisationen Fordern Sofortiges Aus für Kurzstreckenflüge. Press Release. Available online: https://www.robinwood.de/pressemitteilungen/z%C3%BCge-statt-fl%C3%BCge (accessed on 18 January 2023).
- Seber, G.; Escobar, N.; Valin, H.; Malina, R. Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils. Renew. Sustain. Energy Rev. 2022, 170, 112945. [Google Scholar] [CrossRef]
- ICAO. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels. Available online: https://www.icao.int/environmental-protection/CORSIA/Documents/CORSIA_Eligible_Fuels/ICAO%20document%2006%20-%20Default%20Life%20Cycle%20Emissions%20-%20June%202022.pdf (accessed on 7 February 2023).
- Gelhausen, M.C. Airport Capacity Constraints and Strategies for Mitigation: A Global Perspective; Elsevier Science & Technology: Saint Louis, MO, USA, 2020; ISBN 9780128126578. [Google Scholar]
- Gelhausen, M.C.; Grimme, W.; Junior, A.; Lois, C.; Berster, P. Clean Sky 2 Technology Evaluator—Results of the First Air Transport System Level Assessments. Aerospace 2022, 9, 204. [Google Scholar] [CrossRef]
- Grimme, W. Luftverkehrsszenarien in BEniVer: 2. Statuskonferenz Energiewende im Verkehr. 2022. Available online: https://elib.dlr.de/187415/ (accessed on 24 February 2023).
- ICAO. Conversion Processes. Available online: https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx (accessed on 7 February 2023).
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 111564. [Google Scholar] [CrossRef]
- OMV. Sustainable Aviation Fuels—Wohin Geht Die Reise? Available online: https://www.omv.com/de/blog/sustainable-aviation-fuels-wohin-geht-die-reise (accessed on 6 January 2023).
- Matsuura, S. Waste Cooking Oil Prices Soar on Demand from Airline Industry. Available online: https://www.asahi.com/ajw/articles/14704414 (accessed on 6 January 2023).
- Ahrens, S. Monatlicher Preis für Sonnenblumenöl im Globalen Handel von Dezember 2019 bis Dezember 2022. Available online: https://de.statista.com/statistik/daten/studie/1296737/umfrage/monatlicher-preis-sonnenblumenoel/#:~:text=Monatlicher%20Preis%20f%C3%BCr%20Sonnenblumen%C3%B6l%20im%20globalen%20Handel%20bis%20Dezember%202022&text=Im%20Dezember%202022%20lag%20der,dem%20April%202022%20wieder%20gesunken. (accessed on 6 January 2023).
- O’Malley, J.; Pavlenko, N.; Searle, S. Estimating Sustainable Aviation Fuel Feedstock Availability to Meet Growing European Union Demand; Working Paper 2021-13. 2021. Available online: https://theicct.org/sites/default/files/publications/Sustainable-aviation-fuel-feedstock-eu-mar2021.pdf (accessed on 24 February 2023).
- Brosowski, A.; Krause, T.; Mantau, U.; Mahro, B.; Noke, A.; Richter, F.; Raussen, T.; Bischof, R.; Hering, T.; Blanke, C.; et al. How to measure the impact of biogenic residues, wastes and by-products: Development of a national resource monitoring based on the example of Germany. Biomass Bioenergy 2019, 127, 105275. [Google Scholar] [CrossRef]
- Wang, W.-C.; Tao, L. Bio-jet fuel conversion technologies. Renew. Sustain. Energy Rev. 2016, 53, 801–822. [Google Scholar] [CrossRef] [Green Version]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- EUROSTAT. Electricity Production, Consumption and Market Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview (accessed on 24 February 2023).
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe: COM(2020) 301 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=EN (accessed on 13 February 2023).
- Drünert, S.; Neuling, U.; Zitscher, T.; Kaltschmitt, M. Power-to-Liquid fuels for aviation—Processes, resources and supply potential under German conditions. Appl. Energy 2020, 277, 115578. [Google Scholar] [CrossRef]
- Giannelos, G.; Humphris-Bach, A.; Davies, A.; Baxter, B.; Cames, M.; Kasten, P.; Siskos, P.; Tsiropoulos, I.; Kalokyris, T.; Statharas, S. Study Supporting the Impact Assessment of the ReFuelEU Aviation Initiative: Final Report; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-41016-4. [Google Scholar]
- Air France KLM Group. Universal Registration Document 2019 Including the Annual Financial Report. Available online: https://www.airfranceklm.com/sites/default/files/publications_en/document/universalregistrationdocument2019va.pdf (accessed on 6 February 2023).
- EasyJet plc. Annual Report and Accounts 2019: Resilient Focused Data Driven. Available online: https://corporate.easyjet.com/~/media/Files/E/Easyjet/pdf/investors/results-centre/2019/eas040-annual-report-2019-web.pdf (accessed on 6 February 2023).
- IAG. Full Year Results Announcement. Available online: https://www.iairgroup.com/~/media/Files/I/IAG/press-releases/english/2020/Full%20year%20results%20release%20for%20the%20year%20to%20December%2031%202019.pdf (accessed on 6 February 2023).
- Lufthansa Group. Annual Report 2019: Creating Sustainable Value. Available online: https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/financial-reports/annual-reports/LH-AR-2019-e.pdf (accessed on 6 February 2023).
- Ryanair Holdings plc. Form 20-F. Available online: https://investor.ryanair.com/wp-content/uploads/2020/07/Ryanair-20-F-2020.pdf (accessed on 6 February 2023).
- IATA. Net-Zero Carbon Emissions by 2050. Press Release No: 66. Available online: https://www.iata.org/en/pressroom/pressroom-archive/2021-releases/2021-10-04-03/ (accessed on 24 February 2023).
- Adler, M.; Boonekamp, T.; Konijn, S. Aviation Fit for 55: Ticket Prices, Demand and Carbon Leakage. Research Report, Amsterdam. 2022. Available online: https://www.seo.nl/wp-content/uploads/2022/03/2022-16-Aviation-fit-for-55.pdf (accessed on 18 January 2023).
- Oxera. Assessment of the Impact of the Fit for 55 Policies on Airports: Prepared for ACI EUROPE. 2022. Available online: https://www.oxera.com/wp-content/uploads/2022/06/Impact-assessment-of-Fit-for-55-policies-on-the-aviation-sector_final_080622.pdf (accessed on 18 January 2023).
- Ehlers, T.; Kölker, K.; Lütjens, K. Auswirkungen der Fit-for-55-Instrumente auf die Preise in der Luftfahrt. Wirtschaftsdienst 2022, 102, 801–807. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Power Generation Costs in 2020. 2021. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 24 February 2023).
- Umweltbundesamt. Deutlich Weniger Erneuerbarer Strom im Jahr 2021: Nutzung von Biokraftstoffen sinkt Ebenfalls; Deutliches Plus nur bei Erneuerbarer Wärme. Press Release 50/2021. Available online: https://www.umweltbundesamt.de/presse/pressemitteilungen/deutlich-weniger-erneuerbarer-strom-im-jahr-2021 (accessed on 24 February 2023).
- United States Congress. Inflation Reduction Act of 2022: H.R.5376. 2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/5376/text (accessed on 24 February 2023).
- Kharina, A.; Rutherford, D. Fuel Efficiency Trends for New Commercial Jet Aircraft: 1960 to 2014: White Paper, Washington, DC. 2015. Available online: https://theicct.org/sites/default/files/publications/ICCT_Aircraft-FE-Trends_20150902.pdf (accessed on 16 January 2023).
- Clean Sky 2 Joint Undertaking. Clean Sky 2 Technology Evaluator First Global Assessment: Technical Report. 2021. Available online: https://www.clean-aviation.eu/sites/default/files/2021-09/TE-FGA-TR_en.pdf (accessed on 16 January 2023).
- Silberhorn, D.; Hartmann, J.; Dzikus, N.M.; Atanasov, G.; Zill, T.; Brand, U.; Gomez Trillos, J.C.; Oswald, M.; Vogt, T.; Wilken, D.; et al. The Air-Vehicle as a Complex System of Air Transport Energy Systems. In AIAA AVIATION 2020 FORUM, Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; ISBN 978-1-62410-598-2. [Google Scholar]
- Grimme, W.; Braun, M. Estimation of potential hydrogen demand and CO2 mitigation in global passenger air transport by the year 2050. Transp. Res. Procedia 2022, 65, 24–33. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 63002. [Google Scholar] [CrossRef] [Green Version]
- EUROCONTROL. Aviation Outlook 2050: Main Report—STATFOR Doc 683 08/04/2022. 2022. Available online: https://www.eurocontrol.int/archive_download/all/node/13448 (accessed on 13 February 2023).
- Air Transport Action Group. Waypoint 2050: Balancing Growth in Connectivity with a Comprehensive Global Air Transport Response to the Climate Emergency: A Vision of Net-Zero Aviation by Mid-Century. Second Edition September 2021, Geneva. 2021. Available online: https://aviationbenefits.org/media/167417/w2050_v2021_27sept_full.pdf (accessed on 17 February 2023).
Feedstock | Conversion Pathway | Estimated Lifecycle CO2-eq Emissions (g/MJ Jet Fuel) | Lifecycle CO2 Reduction Potential vs. Fossil Fuel |
---|---|---|---|
Agricultural residues | FT | 7.7 | −90.8% |
Forestry residues | FT | 8.3 | −90.1% |
Municipal solid waste | FT | 5.2 | −93.8% |
Poplar | FT | 20.8 | −75.1% |
Miscanthus | FT | −2.2 | −102.6% |
Switchgrass | FT | 15.7 | −81.2% |
Tallow | HEFA | 22.5 | −73.1% |
Used Cooking Oil | HEFA | 13.9 | −83.4% |
Palm fatty acid distillate | HEFA | 20.7 | −75.2% |
Corn Oil | HEFA | 17.2 | −79.4% |
Soybean Oil | HEFA | 66.2 | −20.8% |
Rapeseed Oil | HEFA | 73.4 | −12.2% |
Camelina Oil | HEFA | 28.6 | −65.8% |
Agricultural residues | ATJ (Isobutanol) | 29.3 | −65.0% |
Forestry residues | ATJ (Isobutanol) | 23.8 | −71.5% |
Sugarcane | ATJ (Isobutanol) | 33.1 | −60.4% |
Corn grain | ATJ (Isobutanol) | 85.5 | 2.3% |
Miscanthus | ATJ (Isobutanol) | 19.8 | −76.3% |
Switchgrass | ATJ (Isobutanol) | 48.8 | −41.6% |
Molasses | ATJ (Isobutanol) | 36.1 | −56.8% |
Sugarcane | ATJ (Ethanol) | 32.8 | −60.8% |
Corn Grain | ATJ (Ethanol) | 100.6 | 20.3% |
Agricultural residues | ATJ (Ethanol) | 24.6–39.7 | −70.6%–−52.5% |
Forestry residues | ATJ (Ethanol) | 24.9–40.0 | −70.2%–−52.2% |
Miscanthus | ATJ (Ethanol) | 9.3–24.3 | −88.9%–−70.9% |
Switchgrass | ATJ (Ethanol) | 33.7–48.7 | −59.7%–−41.7% |
Waste gases | ATJ (Ethanol) | 29.4–42.4 | −64.8%–−49.8% |
Sugarcane | SIP | 43.9 | −47.5% |
Sugarbeet | SIP | 43.6 | −47.8% |
Conversion Process | Abbreviation | Possible Feedstocks | Maximum Blending Ratio by Volume |
---|---|---|---|
Fischer–Tropsch hydroprocessed synthesized paraffinic kerosene | FT-SPK | Coal, natural gas, biomass | 50% |
Synthesized paraffinic kerosene from hydroprocessed esters and fatty acids | HEFA-SPK | Bio-oils, animal fat, recycled oils | 50% |
Synthesized iso-paraffins from hydroprocessed fermented sugars | SIP | Biomass used for sugar production | 10% |
Synthesized kerosene with aromatics derived by alkylation of light aromatics from non-petroleum sources | FT-SKA | Coal, natural gas, biomass | 50% |
Alcohol to jet synthetic paraffinic kerosene | ATJ-SPK | Biomass from ethanol or isobutanol production | 50% |
Catalytic hydrothermolysis jet fuel | CHJ | Triglycerides such as soybean oil, jatropha oil, camelina oil, carinata oil, and tung oil | 50% |
Synthesized paraffinic kerosene from hydrocarbon-hydroprocessed esters and fatty acids | HC-HEFA-SPK | Algae | 10% |
Co-hydroprocessing of esters and fatty acids in a conventional petroleum refinery | Co-processed HEFA | Fats, oils, and greases (FOG) co-processed with petroleum | 5% |
Co-hydroprocessing of Fischer-Tropsch hydrocarbons in a conventional petroleumrefinery | Co-processed FT | Fischer–Tropsch hydrocarbons co-processed with petroleum | 5% |
Airline/Airline Group | Business Year | Total Costs in Millions | Fuel Costs in Millions | Fuel Cost Share (% of Total Costs) | Operating Profit Margin | Source |
---|---|---|---|---|---|---|
Air France KLM | 2019 | EUR 26,047 | EUR 5511 | 21.2% | 3.2% | [46] |
easyJet | 2018/2019 | GBP 5984 | GBP 1416 | 23.7% | 6.7% | [47] |
IAG | 2019 | GBP 22,221 | GBP 6021 | 27.1% | 13.9% | [48] |
Lufthansa (Network Airlines) | 2019 | EUR 22,132 | EUR 5326 | 24.1% | 7.8% | [49] |
Lufthansa (Eurowings) | 2019 | EUR 4655 | EUR 1054 | 22.6% | −4.0% | [49] |
Ryanair | 2019/2020 | EUR 2762 | 34.2% | 13.3% | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimme, W. The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace 2023, 10, 218. https://doi.org/10.3390/aerospace10030218
Grimme W. The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace. 2023; 10(3):218. https://doi.org/10.3390/aerospace10030218
Chicago/Turabian StyleGrimme, Wolfgang. 2023. "The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives" Aerospace 10, no. 3: 218. https://doi.org/10.3390/aerospace10030218