Electromagnetic Performance Analysis of Inhomogeneous Radome Walls Considering Temperature and Ablation
Abstract
:1. Introduction
2. Theoretical Basis of IRW
2.1. Design for Typical IRW
2.1.1. Method A
2.1.2. Method B
2.2. Parameters Calculation of IRW
3. Analysis of IRW Using Two Methods
3.1. Results of Method A
3.2. Results of Method B
4. Parameters Calculation of IRW in the Ablation Process
4.1. Temperature Distribution of IRW
4.1.1. Tangential Temperature Distribution
4.1.2. Normal Temperature Distribution
4.2. Dielectric Parameters of IRW Affected by High Temperatures
4.3. Thermal Expansion of IRW Affected by High Temperatures
5. Discussion
5.1. The Influence of Temperature and Ablation on MRW
5.2. The Influence of Temperature and Ablation on GRW
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas, 2nd ed.; Artech House: Washington, DC, USA, 2010; pp. 1–20. [Google Scholar]
- Shavit, R. Radome Electromagnetic Theory and Design; Wiley-IEEE Press: Hoboken, NJ, USA, 2018; pp. 1–15. [Google Scholar]
- Ventura, J.; Schauwecker, Z.; Lainer, M.; Grazioli, J. On the Effect of Radome Characteristics on Polarimetric Moments and Sun Measurements of a Weather Radar. IEEE Geosci. Remote Sens. Lett. 2021, 18, 642–646. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Chen, Y.; Gao, W.; Xu, Q.; Wang, Z.; Liu, J.; Zhou, C.; Xu, W.; Zhou, J. Coupling Model and Electronic Compensation of Antenna-Radome System for Hypersonic Vehicle with Effect of High-Temperature Ablation. IEEE Trans. Antennas Propag. 2020, 68, 2340–2355. [Google Scholar] [CrossRef]
- Nair, R.U.; Jha, R.M. Electromagnetic Performance Analysis of a Novel Monolithic Radome for Airborne Applications. IEEE Trans. Antennas Propag. 2009, 57, 3664–3668. [Google Scholar] [CrossRef]
- Mohammed, P.S.; Vinisha, C.V.; Vandana, S.; Suprava, M.; Nair, R.U. Electromagnetic Performance Analysis of Graded Dielectric Inhomogeneous Streamlined Airborne Radome. IEEE Trans. Antennas Propag. 2017, 65, 2718–2723. [Google Scholar]
- Xu, W.; Duan, B.Y.; Li, P.; Qiu, Y. A New Efficient Thickness Profile Design Method for Streamlined Airborne Radomes. IEEE Trans. Antennas Propag. 2017, 65, 6190–6195. [Google Scholar] [CrossRef]
- Xu, W.; Duan, B.Y.; Li, P.; Hu, N.; Qiu, Y. Multiobjective Particle Swarm Optimization of Boresight Error and Transmission Loss for Airborne Radomes. IEEE Trans. Antennas Propag. 2014, 62, 5880–5885. [Google Scholar] [CrossRef]
- Nair, R.U.; Shashidhara, S.; Jha, R.M. Novel Inhomogeneous Planar Layer Radome Design for Airborne Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 854–856. [Google Scholar] [CrossRef]
- Nair, R.U.; Jha, R.M. Novel A-sandwich radome design for airborne applications. Electron. Lett. 2007, 43, 787–789. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, L.; Zhou, L.; Jiang, Z.; Liu, Z.; Liu, Y. Methodology to Design Variable-Thickness Streamlined Radomes with Graded Dielectric Multilayered Wall. IEEE Trans. Antennas Propag. 2021, 69, 8015–8020. [Google Scholar] [CrossRef]
- Ghiasvand, F.; Heidar, H.; Kazerooni, M.; Hamidi, E. A Frequency-independent Inhomogeneous Planar Radome with High Angular Stability Based on Permittivity Manipulating. AEU-Int. J. Electron. Commun. 2022, 151, 154214. [Google Scholar] [CrossRef]
- Xu, W.; Duan, B.Y.; Li, P.; Qiu, Y. Study on the Electromagnetic Performance of Inhomogeneous Radomes for Airborne Applications—Part I: Characteristics of Phase Distortion and Boresight Error. IEEE Trans. Antennas Propag. 2017, 65, 3162–3174. [Google Scholar] [CrossRef]
- Xu, W.; Duan, B.Y.; Li, P.; Qiu, Y. Study on the Electromagnetic Performance of Inhomogeneous Radomes for Airborne Applications—Part II: The Overall Comparison with Variable Thickness Radomes. IEEE Trans. Antennas Propag. 2017, 65, 3175–3183. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, F.; Cheng, L.; Zhao, K.; Wei, Y.; Li, M.; Meng, N. Development of high-temperature wave-transparent nitride-based CFCMCs for aircraft radomes. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107444. [Google Scholar] [CrossRef]
- Nag, A.; Rao, R.R.; Panda, P.K. High temperature ceramic radomes (HTCR)—A review. Ceram. Int. 2021, 47, 20793–20806. [Google Scholar] [CrossRef]
- Xia, D.; Gu, H.; Xuan, X.; Yu, X.; Zhang, H. Wideband Streamlined Radome Design Based on Modified Graded Si3N4 Structure. In Proceedings of the 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Chengdu, China, 26–29 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 284–287. [Google Scholar]
- Shen, Z.; Zhao, Z.; Peng, H.; Nygren, M. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 2002, 417, 266–269. [Google Scholar] [CrossRef]
- Riley, F.L. Silicon Nitride and Related Materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Chen, F.; Shen, Q.; Zhang, L. Electromagnetic Optimal Design and Preparation of Broadband Ceramic Radome Material with Graded Porous Structure. Prog. Electromagn. Res. 2010, 105, 445–461. [Google Scholar] [CrossRef]
- Zhou, L.; Pei, Y.; Zhang, R.; Fang, D. Design for Broadband High-Temperature Radome Wall with Graded Porous Structure. AIAA J. 2012, 50, 1956–1963. [Google Scholar] [CrossRef]
- Parameswaran, A.; Sonalikar, H.S.; Kundu, D. Temperature-Dependent Electromagnetic Design of Inhomogeneous Planar Layer Variable Thickness Radome for Power Transmission Enhancement. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1572–1576. [Google Scholar] [CrossRef]
- Aparna, A.P.; Sonalikar, H.S. Temperature Dependent Electromagnetic Design of Dielectric Wall for Airborne Applications. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), Ahmedabad, India, 19–22 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Sonalikar, H.S. Temperature Dependent EM Investigation of Inhomogeneous Dielectric Wall for Application in Ablatable Radome. In Proceedings of the 2018 IEEE Indian Conference on Antennas and Propagation (InCAP), Hyderabad, India, 16–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Philippe, A. Reflection and transmission of radio waves at a dielectric slab with variable permittivity. IEEE Trans. Antennas Propag. 1973, 21, 234–236. [Google Scholar] [CrossRef]
- Chen, F.; Shen, Q.; Yan, F.Q.; Zhang, L.M. Spark plasma sintering of alpha-Si3N4 ceramics with MgO-AlPO4 as sintering additives. Mater. Chem. Phys. 2008, 107, 67–71. [Google Scholar] [CrossRef]
- Nair, R.U.; Vandana, S.; Sandhya, S.; Jha, R.M. Temperature-Dependent Electromagnetic Performance Predictions of a Hypersonic Streamlined Radome. Prog. Electromagn. Res. 2015, 154, 65–78. [Google Scholar] [CrossRef]
- Dodds, C.G.; Tanzilli, R.A. Boron Nitride-Toughened Single Phase Silicon Aluminum Oxynitride Composite. U.S. Patent 5925584, 20 July 1999. [Google Scholar]
- Dodds, C.G.; Tanzilli, R.A. Silica, Boron Nitride, Aluminum Nitride, Alumina Composite, Article and Method of Making Same. U.S. Patent 5891815, 6 April 1999. [Google Scholar]
- Li, B. Preparation and Performance of Ablation Resistant, Wave-Transparent Nitride Ceramic Matrix Composites and Radome. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2007. [Google Scholar]
i | AT (°C) | Thickness (mm) | (10−3) | ||||
---|---|---|---|---|---|---|---|
BA | AA | BA | AA | BA | AA | ||
1 | 337.82 | 2.480 | 2.486 | 1.12 | 1.14 | 0.5 | 0.78 |
2 | 473.05 | 2.480 | 2.487 | 2.13 | 2.18 | 7.1 | 12.70 |
3 | 608.29 | 2.480 | 2.489 | 1.12 | 1.15 | 0.5 | 1.01 |
i | AT (°C) | Thickness (mm) | (10−3) | ||||
---|---|---|---|---|---|---|---|
BA | AA | BA | AA | BA | AA | ||
1 | 963.1 | 2.480 | 2.492 | 1.12 | 1.17 | 0.5 | 1.30 |
2 | 1126.0 | 2.480 | 2.494 | 2.13 | 2.25 | 7.1 | 20.42 |
3 | 1288.9 | 2.480 | 2.496 | 1.12 | 1.19 | 0.5 | 1.57 |
i | AT (°C) | Thickness (mm) | (10−3) | ||||
---|---|---|---|---|---|---|---|
BA | AA | BA | AA | BA | AA | ||
1 | 311.4 | 1.250 | 1.256 | 2.50 | 2.54 | 4 | 6.08 |
2 | 392.9 | 1.220 | 1.226 | 2.60 | 2.65 | 6.62 | |
3 | 470.4 | 1.130 | 1.136 | 2.90 | 2.97 | 7.14 | |
4 | 542.3 | 1.050 | 1.056 | 3.30 | 3.39 | 7.62 | |
5 | 608.3 | 0.950 | 0.956 | 3.90 | 4.02 | 8.06 | |
6 | 668.0 | 0.860 | 0.866 | 4.70 | 4.86 | 8.45 | |
7 | 722.1 | 0.780 | 0.785 | 5.70 | 5.91 | 8.81 | |
8 | 771.6 | 0.720 | 0.725 | 6.80 | 7.06 | 9.14 | |
9 | 817.4 | 0.670 | 0.675 | 8.00 | 8.33 | 9.45 |
i | AT (°C) | Thickness (mm) | (10−3) | ||||
---|---|---|---|---|---|---|---|
BA | AA | BA | AA | BA | AA | ||
1 | 932.3 | 1.310 | 1.316 | 2.50 | 2.62 | 4 | 10.22 |
2 | 1032.0 | 1.270 | 1.276 | 2.60 | 2.73 | 10.88 | |
3 | 1126.7 | 1.180 | 1.186 | 2.90 | 3.06 | 11.51 | |
4 | 1214.0 | 1.080 | 1.086 | 3.30 | 3.50 | 16.09 | |
5 | 1293.6 | 0.980 | 0.986 | 3.90 | 4.16 | 16.62 | |
6 | 1365.5 | 0.880 | 0.885 | 4.70 | 5.03 | 17.10 | |
7 | 1430.0 | 0.790 | 0.795 | 5.70 | 6.11 | 17.53 | |
8 | 1488.7 | 0.730 | 0.735 | 6.80 | 7.31 | 17.92 | |
9 | 1543.2 | 0.680 | 0.684 | 8.00 | 8.62 | 18.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dan, Y.; Yang, J. Electromagnetic Performance Analysis of Inhomogeneous Radome Walls Considering Temperature and Ablation. Aerospace 2023, 10, 927. https://doi.org/10.3390/aerospace10110927
Dan Y, Yang J. Electromagnetic Performance Analysis of Inhomogeneous Radome Walls Considering Temperature and Ablation. Aerospace. 2023; 10(11):927. https://doi.org/10.3390/aerospace10110927
Chicago/Turabian StyleDan, Yihua, and Jian Yang. 2023. "Electromagnetic Performance Analysis of Inhomogeneous Radome Walls Considering Temperature and Ablation" Aerospace 10, no. 11: 927. https://doi.org/10.3390/aerospace10110927
APA StyleDan, Y., & Yang, J. (2023). Electromagnetic Performance Analysis of Inhomogeneous Radome Walls Considering Temperature and Ablation. Aerospace, 10(11), 927. https://doi.org/10.3390/aerospace10110927