Precipitation Climatology for the Arid Region of the Arabian Peninsula—Variability, Trends and Extremes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intensity, Duration and Frequency of Rainfall Events
2.2. Data, Model Set up and Evaluation Metrics
3. Results and Discussion
3.1. Dataset Evaluation
3.2. Mean Annual and Monthly Accumulated Precipitation
3.3. Trend Analysis
3.4. Extreme Value Analysis (Intensity, Duration and Frequency)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hasanean, H.; Almazroui, M. Rainfall: Features and Variations over Saudi Arabia, A Review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef] [Green Version]
- Subyani, A.M. Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia/Distribution géostatistique de la pluie moyenne annuelle et saisonnière dans le Sud-Ouest de l’Arabie Saoudite. Hydrol. Sci. J. 2004, 49, 817. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M. Dynamical downscaling of rainfall and temperature over the Arabian Peninsula using RegCM4. Clim. Res. 2012, 52, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M.; Islam, M.N.; Jones, P.D.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 2012, 2012, 29–45. [Google Scholar] [CrossRef]
- AlSarmi, S.; Washington, R. Recent observed climate change over the Arabian Peninsula. J. Geophys. Res. Atmos. 2011, 116, D11109. [Google Scholar] [CrossRef]
- Barth, H.-J.; Steinkohl, F. Origin of winter precipitation in the central coastal lowlands of Saudi Arabia. J. Arid. Environ. 2004, 57, 101–115. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- Almazroui, M. Rainfall Trends and Extremes in Saudi Arabia in Recent Decades. Atmosphere 2020, 11, 964. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Implications of Climate Change on Water Resources in Saudi Arabia. Arab. J. Sci. Eng. 2013, 38, 1959–1971. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Dupont, B.; Allen, D.L. Revision of the Rainfall-Intensity Duration Curves for the Commonwealth of Kentucky; University of Kentucky Transportation Center: Lexington, KY, USA, 1999. [Google Scholar]
- Sun, Y.; Wendi, D.; Kim, D.E.; Liong, S.-Y. Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. Geosci. Lett. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Keifer, C.; Chu, H.H. Synthetic Storm Pattern for Drainage Design. J. Hydraul. Eng. 1957, 83, 1–25. [Google Scholar]
- Koutsoyiannis, D.; Kozonis, D.; Manetas, A. A mathematical framework for studying rainfall intensity-duration-frequency relationships. J. Hydrol. 1998, 206, 118–135. [Google Scholar] [CrossRef]
- Cook, N.J. Designers Guide to Wind Loading of Building Structures. Part 1; Butterworth Publishers: Stoneham, MA, USA, 1986; p. 352. [Google Scholar]
- Palutikof, J.P.; Brabson, B.B.; Lister, D.H.; Adcock, S.T. A review of methods to calculate extreme wind speeds. Meteorol. Appl. 1999, 6, 119–132. [Google Scholar] [CrossRef]
- Platon, P.; George, G.; Nicolas, B.; George, K. Extreme wind events in a complex maritime environment: Ways of quantification. J. Wind. Eng. Ind. Aerodyn. 2016, 149, 89–101. [Google Scholar] [CrossRef]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946; p. 591. [Google Scholar]
- Hazewinkel, M. Encyclopaedia of Mathematics; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Stergios, E.; Andreas, L.; Efthymios, I.N.; Emmanouil, N.A. Quantitative assessment of annual maxima, peaks-over-threshold and multifractal parametric approaches in estimating intensity-duration-frequency curves from short rainfall records. J. Hydrol. 2020, 589, 125151. [Google Scholar] [CrossRef]
- Daniel, M.; Efthymios, I.N.; Francesco, M.; Emmanouil, N.A. Precipitation frequency analyses based on radar estimates: An evaluation over the contiguous United States. J. Hydrol. 2019, 573, 299–310. [Google Scholar] [CrossRef]
- Patlakas, P.; Galanis, G.; Diamantis, D.; Kallos, G. Low wind speed events: Persistence and frequency. Wind Energy 2017, 20, 1033–1047. [Google Scholar] [CrossRef]
- Daniel, G. Combining regional approach and data extension procedure for assessing GEV distribution of extreme precipitation in Belgium. J. Hydrol. 2002, 268, 113–126. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Cotton, W.R.; Pielke, R.A., Sr.; Walko, R.L.; Liston, G.E.; Tremback, C.J.; Jiang, H.; McAnelly, R.L.; Harrington, J.Y.; Nicholls, M.E.; Carrio, G.G.; et al. RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys. 2003, 82, 5–29. [Google Scholar] [CrossRef]
- Kallos, G.; Solomos, S.; Kushta, J.; Mitsakou, C.; Spyrou, C.; Bartsotas, N.; Kalogeri, C. Natural and anthropogenic aerosols in the Eastern Mediterranean and Middle East: Possible impacts. Sci. Total. Environ. 2014, 488–489, 389–397. [Google Scholar] [CrossRef]
- Kushta, J.; Kallos, G.; Astitha, M.; Solomos, S.; Spyrou, C.; Mitsakou, C.; Lelieveld, J. Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. J. Geophys. Res. Atmos. 2014, 119, 1463–1491. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Tsalis, C.; Kallos, G. Wind and wave extremes associated with tropical-like cyclones in the Mediterranean basin. Int. J. Climatol. 2021, 41, E1623–E1644. [Google Scholar] [CrossRef]
- Stathopoulos, C.; Patlakas, P.; Tsalis, C.; Kallos, G. The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones. Remote Sens. 2020, 12, 825. [Google Scholar] [CrossRef] [Green Version]
- Bartsotas, N.S.; Anagnostou, E.N.; Nikolopoulos, E.I.; Kallos, G. Investigating Satellite Precipitation Uncertainty Over Complex Terrain. J. Geophys. Res. Atmos. 2018, 123, 5346–5359. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A New High-Resolution Blended Real-Time Global Sea Surface Temperature Analysis. Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.S. Global Ecosystem Framework—Definitions; USGS EROS Data Center Internal Report: Sioux Falls, SD, USA, 1994; 37p. [Google Scholar]
- Olson, J.S. Global Ecosystem Framework—Translation Strategy; USGS EROS Data Center Internal Report: Sioux Falls, SD, USA, 1994; 39p. [Google Scholar]
- Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences (International Geophysics Series; v. 91); Academic Press: Cambridge, MA, USA, 2006; ISBN1 13: 978-0-12-751966-1. ISBN2 10: 0-12-751966-1. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirstetter, P.-E.; Tian, Y. Performance of IMERG as a Function of Spatiotemporal Scale. J. Hydrometeorol. 2017, 18, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Standards and Recommended Practices. Available online: https://public.wmo.int/en/resources/standards-technical-regulations (accessed on 3 June 2021).
- Abdullah, M.A.; Al-Mazroui, M.A. Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis. Climate Res. 1998, 9, 213–223. [Google Scholar] [CrossRef]
- Mansour, A.; Islam, M.N.; Fahad, S.; Abdulrahman, K.A.; Ramzah, D. Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 2017, 194, 202–213. [Google Scholar] [CrossRef]
- AlSarmi, S.H.; Washington, R. Changes in climate extremes in the Arabian Peninsula: Analysis of daily data. Int. J. Climatol. 2014, 34, 1329–1345. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patlakas, P.; Stathopoulos, C.; Flocas, H.; Bartsotas, N.S.; Kallos, G. Precipitation Climatology for the Arid Region of the Arabian Peninsula—Variability, Trends and Extremes. Climate 2021, 9, 103. https://doi.org/10.3390/cli9070103
Patlakas P, Stathopoulos C, Flocas H, Bartsotas NS, Kallos G. Precipitation Climatology for the Arid Region of the Arabian Peninsula—Variability, Trends and Extremes. Climate. 2021; 9(7):103. https://doi.org/10.3390/cli9070103
Chicago/Turabian StylePatlakas, Platon, Christos Stathopoulos, Helena Flocas, Nikolaos S. Bartsotas, and George Kallos. 2021. "Precipitation Climatology for the Arid Region of the Arabian Peninsula—Variability, Trends and Extremes" Climate 9, no. 7: 103. https://doi.org/10.3390/cli9070103
APA StylePatlakas, P., Stathopoulos, C., Flocas, H., Bartsotas, N. S., & Kallos, G. (2021). Precipitation Climatology for the Arid Region of the Arabian Peninsula—Variability, Trends and Extremes. Climate, 9(7), 103. https://doi.org/10.3390/cli9070103