Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects
Abstract
:1. Introduction
2. Background, Materials, and Methods
2.1. Negative Emissions Technologies
Negative Emissions Technology | Removal Process | Capture Medium | Storage (Time; Location) |
---|---|---|---|
Re-/afforestation | Photosynthesis | Land biomass | Temporary; increased carbon stock |
Harvested wood products | |||
Soil carbon sequestration | Land or marine biomass | ||
Biochar | |||
BECCS | Long-lasting; geological | ||
Ocean fertilisation | Marine biomass | Temporary to long-lasting; minerals (land) and sediments, or calcification (oceans) | |
Enhanced weathering | Chemical | Silicate/carbonate rocks | |
DACCS | Amines or carbonation | Long-lasting; geological |
2.2. Method: Narrative Review
Designing Value Indexes
3. Results: Indicators of NET Values for Climate Stabilisation Objectives
3.1. Effectiveness
3.1.1. Global Cooling Potentials
3.1.2. Removal Inertia, Storage Decay, and Storage Maintenance Requirements
3.1.3. Changed Albedo
3.1.4. Change in Direct and Indirect Fluxes of Greenhouse Gases
3.2. Efficiency
3.2.1. Energy Efficiency
3.2.2. Resource Intensity (Land, Water, and Nutrients)
3.2.3. Cost
3.3. Scale
3.3.1. Capture and Storage Potentials
3.3.2. Non-Rivalrous, Complementary Negative Emissions
3.3.3. Technical Integration
3.3.4. Juridical Compatibility
3.3.5. Market Compatibility
3.3.6. Acceptance
3.4. Risk
3.4.1. Diagnostic and Prognostic Uncertainty
3.4.2. Investment Risks
3.4.3. Climate System Tipping Points
3.5. Synergies
4. Discussion: Designing a Negative Emissions Value Index
5. Conclusions
- Immediate reduction in emissions provides more certainty than reliance on future negative emissions. While it is clear that both a reduction in emissions and negative emissions are needed to reach the Paris Agreement’s temperature objectives, the potential for future negative emissions should not motivate postponing conventional mitigation.
- The relatively lower global cooling potential of delayed negative emissions compared to near-term negative emissions, and the benefits of limiting temperature overshoot, indicate that the sooner negative emissions are deployed the better. While research and development of less mature NETs with high potential is a key concern, it is critical to also reap possibilities for the deployment of more mature NETs in the near term, even if their abatement potential is limited.
- The scale and location of the deployment of NETs often determine whether synergies with other objectives are positive or negative. Identifying and showcasing co-benefits additionally drive NET deployment on existing markets and contribute to building new businesses around values that can be sold on premium markets. Concurrently, limiting negative emissions due to harmful synergies may provide false assurances. Negative synergies triggered by the deployment of NETs must be weighed against the negative impacts of climate change.
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Hilaire, J.; Minx, J.C.; Callaghan, M.W.; Edmonds, J.; Luderer, G.; Nemet, G.F.; Rogelj, J.; del Mar Zamora, M. Negative emissions and international climate goals—Learning from and about mitigation scenarios. Clim. Chang. 2019, 157, 189–219. [Google Scholar] [CrossRef] [Green Version]
- Pires, J.C.M. Negative emissions technologies: A complementary solution for climate change mitigation. Sci. Total Environ. 2019, 672, 502–514. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Cambridge, UK, 2018. [Google Scholar]
- Gilfillan, D.; Marland, G.; Boden, T.; Andres, R. Global, Regional, and National Fossil-Fuel CO2 Emissions; Carbon Dioxide Information and Analysis Center, Appalachian State University: Boone, NC, USA, 2019. [Google Scholar]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef] [Green Version]
- McLaren, D.P.; Tyfield, D.P.; Willis, R.; Szerszynski, B.; Markusson, N.O. Beyond “Net-Zero”: A Case for Separate Targets for Emissions Reduction and Negative Emissions. Front. Clim. 2019, 1. [Google Scholar] [CrossRef]
- Geden, O.; Löschel, A. Define limits for temperature overshoot targets. Nat. Geosci. 2017, 10, 881–882. [Google Scholar] [CrossRef]
- Bellamy, R. Incentivize negative emissions responsibly. Nat. Energy 2018. [Google Scholar] [CrossRef]
- Fridahl, M. Pre- and Post-Paris Views on Bioenergy with Carbon Capture and Storage. In Bioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development; Pires, J.C., Gonçalves, A.L., Eds.; Elsevier: New York, NY, USA, 2019. [Google Scholar]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; et al. Negative emissions—Part 1: Research landscape and synthesis. Environ. Res. Lett. 2018, 13, 063001. [Google Scholar] [CrossRef]
- Quader, M.A.; Ahmed, S. Bioenergy with Carbon Capture and Storage (BECCS): Future Prospects of Carbon-Negative Technologies. In Clean Energy for Sustainable Development; Rasul, M.G., Azad, A.K., Sharma, S.C., Eds.; Academic Press: Amsterdam, The Netherlands, 2017; pp. 91–140. [Google Scholar]
- Samari, M.; Ridha, F.; Manovic, V.; Macchi, A.; Anthony, E.J. Direct capture of carbon dioxide from air via lime-based sorbents. Mitig. Adapt. Strateg. Glob. Chang. 2019. [Google Scholar] [CrossRef] [Green Version]
- Núñez-López, V.; Moskal, E. Potential of CO2-EOR for Near-Term Decarbonization. Front. Clim. 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Matter, J.M.; Stute, M.; Snæbjörnsdottir, S.Ó.; Oelkers, E.H.; Gislason, S.R.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- Lyngfelt, A.; Johansson, D.J.A.; Lindeberg, E. Negative CO2 emissions—An analysis of the retention times required with respect to possible carbon leakage. Int. J. Greenh. Gas Control. 2019, 87, 27–33. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 2012, 90, 489–500. [Google Scholar] [CrossRef]
- Iordan, C.-M.; Hu, X.; Arvesen, A.; Kauppi, P.; Cherubini, F. Contribution of forest wood products to negative emissions: Historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance Manag. 2018, 13, 1–16. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Bornmann, L.; Fuss, S. Fast growing research on negative emissions. Environ. Res. Lett. 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Small, M.L. How to Conduct a Mixed Methods Study: Recent Trends in a Rapidly Growing Literature. Annu. Rev. Sociol. 2011, 37, 57–86. [Google Scholar] [CrossRef] [Green Version]
- Fins, J.J.; Guest, R.S.; Acres, C.A. Gaining Insight into the Care of Hospitalized Dying Patients: An Interpretative Narrative Analysis. J. Pain Symptom Manag. 2000, 20, 399–407. [Google Scholar] [CrossRef]
- Demiris, G.; Oliver, D.P.; Washington, K.T. Defining and Analyzing the Problem. In Behavioral Intervention Research in Hospice and Palliative Care; Demiris, G., Oliver, D.P., Washington, K.T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–39. [Google Scholar]
- Stafford-Smith, M.; Griggs, D.; Gaffney, O.; Ullah, F.; Reyers, B.; Kanie, N.; Stigson, B.; Shrivastava, P.; Leach, M.; O’Connell, D. Integration: The key to implementing the Sustainable Development Goals. Sustain. Sci. 2017, 12, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, K.U.; Dulal, H.B.; Johnson, C.; Baptiste, A. Understanding livelihood vulnerability to climate change: Applying the livelihood vulnerability index in Trinidad and Tobago. Geoforum 2013, 47, 125–137. [Google Scholar] [CrossRef]
- Sullivan, C.; Meigh, J. Targeting attention on local vulnerabilities using an integrated index approach: The example of the climate vulnerability index. Water Sci. Technol. 2005, 51, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Barnett, J.; Lambert, S.; Fry, I. The Hazards of Indicators: Insights from the Environmental Vulnerability Index. Ann. Assoc. Am. Geogr. 2008, 98, 102–119. [Google Scholar] [CrossRef]
- Hák, T.; Moldan, B.; Dahl, A.L. (Eds.) Sustainability Indicators: A Scientific Assessment; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Geden, O.; Peters, G.P.; Scott, V. Targeting carbon dioxide removal in the European Union. Clim. Policy 2019, 19, 487–494. [Google Scholar] [CrossRef]
- Zickfeld, K.; MacDougall, A.H.; Matthews, H.D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 2016, 11, 055006. [Google Scholar] [CrossRef]
- Neubauer, S.C.; Megonigal, J.P. Moving Beyond Global Warming Potentials to Quantify the Climatic Role of Ecosystems. Ecosystems 2015, 18, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- Gebbie, G.; Huybers, P. The Little Ice Age and 20th-century deep Pacific cooling. Science 2019, 363, 70. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.D.; Ciais, P.; Davis, S.J.; Friedlingstein, P.; Gasser, T.; Peters, G.P.; Rogelj, J.; van Vuuren, D.P.; Canadell, J.G.; Cowie, A.; et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 2016, 11, 095012. [Google Scholar] [CrossRef] [Green Version]
- Matthews, H.D.; Zickfeld, K.; Knutti, R.; Allen, M.R. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environ. Res. Lett. 2018, 13, 010201. [Google Scholar] [CrossRef]
- Azar, C.; Johansson, D.J.A. On the relationship between metrics to compare greenhouse gases—The case of IGTP, GWP and SGTP. Earth Syst. Dyn. 2012, 3, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Shine, K.P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim. Chang. 2005, 68, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Busch, J.; Engelmann, J.; Cook-Patton, S.C.; Griscom, B.W.; Kroeger, T.; Possingham, H.; Shyamsundar, P. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Chang. 2019, 9, 463–466. [Google Scholar] [CrossRef]
- Leng, L.; Xu, X.; Wei, L.; Fan, L.; Huang, H.; Li, J.; Lu, Q.; Li, J.; Zhou, W. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Sci. Total Environ. 2019, 664, 11–23. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G. Risk Assessment of the Geological Storage of CO2: A Review. In Geologic Carbon Sequestration: Understanding Reservoir Behavior; Vishal, V., Singh, T.N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 249–284. [Google Scholar]
- Tisserant, A.; Cherubini, F. Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation. Land 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Sykes, A.J.; Macleod, M.; Eory, V.; Rees, R.M.; Payen, F.; Myrgiotis, V.; Williams, M.; Sohi, S.; Hillier, J.; Moran, D.; et al. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Glob. Chang. Biol. 2020, 26, 1085–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.; Adams, J.; Beerling, D.J.; Beringer, T.; Calvin, K.V.; Fuss, S.; Griscom, B.; Hagemann, N.; Kammann, C.; Kraxner, F.; et al. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- Smebye, A.B.; Sparrevik, M.; Schmidt, H.P.; Cornelissen, G. Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass Bioenergy 2017, 101, 35–43. [Google Scholar] [CrossRef]
- Fajardy, M.; Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar] [CrossRef] [Green Version]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Pratt, K.; Moran, D. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 2010, 34, 1149–1158. [Google Scholar] [CrossRef]
- Betts, A.K.; Ball, J.H. Albedo over the boreal forest. J. Geogr. Res. 1997, 102, 28901–28909. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Meyer, S.; Bright, R.M.; Fischer, D.; Schulz, H.; Glaser, B. Albedo Impact on the Suitability of Biochar Systems to Mitigate Global Warming. Environ. Sci. Technol. 2012, 46, 12726–12734. [Google Scholar] [CrossRef]
- Bruckman, V.J.; Pumpanen, J. Biochar use in global forests: Opportunities and challenges. In Developments in Soil Science; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 427–453. [Google Scholar]
- Bright, R.M.; Cherubini, F.; Strømman, A.H. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ. Impact Assess. Rev. 2012, 37, 2–11. [Google Scholar] [CrossRef]
- EEA. Air Pollution Impacts from Carbon Capture and Storage (CCS); European Environment Agency: Copenhagen, Danmark, 2011. [Google Scholar]
- Wingenter, O.W.; Haase, K.B.; Strutton, P.; Friederich, G.; Meinardi, S.; Blake, D.R.; Rowland, F.S. Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. Proc. Natl. Acad. Sci. USA 2004, 101, 8537. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E. Goodbye to carbon neutral: Getting biomass footprints right. Environ. Impact Assess. Rev. 2009, 29, 165–168. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Cambridge, UK, 2019. [Google Scholar]
- Fridahl, M.; Lehtveer, M. Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 2018, 42, 155–165. [Google Scholar] [CrossRef]
- Downie, A.; Munroe, P.; Cowie, A.; Van Zwieten, L.; Lau, D.M.S. Biochar as a Geoengineering Climate Solution: Hazard Identification and Risk Management. Crit. Rev. Environ. Sci. Technol. 2012, 42, 225–250. [Google Scholar] [CrossRef]
- Stanners, D.; Bosch, P.; Dom, A.; Gabrielsen, P.; Gee, D.; Martin, J.; Rickard, L.; Weber, J.-L. Frameworks for environmental assessment and indicators at the EEA. In Sustainability Indicators: A Scientific Assessment; Hák, T., Moldan, B., Dahl, A.L., Eds.; Island Press: Washington, DC, USA, 2007; pp. 127–144. [Google Scholar]
- Budzianowski, W.M. Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew. Sustain. Energy Rev. 2012, 16, 6507–6521. [Google Scholar] [CrossRef]
- Creutzig, F.; Breyer, C.; Hilaire, J.; Minx, J.; Peters, G.P.; Socolow, R. The mutual dependence of negative emission technologies and energy systems. Energy Environ. Sci. 2019, 12, 1805–1817. [Google Scholar] [CrossRef]
- Bui, M.; Fajardy, M.; Mac Dowell, N. Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction. Appl. Energy 2017, 195, 289–302. [Google Scholar] [CrossRef]
- Realmonte, G.; Drouet, L.; Gambhir, A.; Glynn, J.; Hawkes, A.; Köberle, A.C.; Tavoni, M. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 2019, 10, 3277. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Humpenöder, F.; Bauer, N.; Dietrich, J.P.; Popp, A.; Leon Bodirsky, B.; Bonsch, M.; Lotze-Campen, H. The global economic long-term potential of modern biomass in a climate-constrained world. Environ. Res. Lett. 2014, 9, 074017. [Google Scholar] [CrossRef] [Green Version]
- Hudiburg, T.W.; Law, B.E.; Wirth, C.; Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nat. Clim. Chang. 2011, 1, 419–423. [Google Scholar] [CrossRef]
- Fuss, S.; Canadell, J.G.; Peters, G.P.; Tavoni, M.; Andrew, R.M.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Kraxner, F.; Nakicenovic, N.; et al. Betting on negative emissions. Nat. Clim. Chang. 2014, 4, 850–853. [Google Scholar] [CrossRef]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.Y.; Patel, A.K.; Hong, M.E.; Chang, W.S.; Sim, S.J. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Rep. 2019, 7, 100270. [Google Scholar] [CrossRef]
- Ou, Y.; Zhai, H.; Rubin, E.S. Life cycle water use of coal- and natural-gas-fired power plants with and without carbon capture and storage. Int. J. Greenh. Gas Control. 2016, 44, 249–261. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars Impact on Soil-Moisture Storage in an Ultisol and Two Aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Sheil, D. Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. For. Ecosyst. 2018, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Neset, T.S.; Cordell, D. Global phosphorus scarcity: Identifying synergies for a sustainable future. J. Sci. Food Agric. 2012, 92, 2–6. [Google Scholar] [CrossRef]
- ten Berge, H.F.M.; van der Meer, H.G.; Steenhuizen, J.W.; Goedhart, P.W.; Knops, P.; Verhagen, J. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): A pot experiment. PLoS ONE 2012, 7, e42098. [Google Scholar] [CrossRef] [Green Version]
- McGlashan, N.; Shah, N.; Caldecott, B.; Workman, M. High-level techno-economic assessment of negative emissions technologies. Process Saf. Environ. Prot. 2012, 90, 501–510. [Google Scholar] [CrossRef]
- Smith, P. Carbon sequestration in croplands: The potential in Europe and the global context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Levihn, F.; Linde, L.; Gustafsson, K.; Dahlen, E. Introducing BECCS through HPC to the research agenda: The case of combined heat and power in Stockholm. Energy Rep. 2019, 5, 1381–1389. [Google Scholar] [CrossRef]
- Geels, F.W. Regime Resistance against Low-Carbon Transitions: Introducing Politics and Power into the Multi-Level Perspective. Theory Cult. Soc. 2014, 31, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, F.; Smith, A.; Stirling, A. Socio-technological Regimes and Transition Contexts. In System Innovation and the Transition to Sustainability: Theory, Evidence and Policy; Elzen, B., Geels, F.W., Green, K., Eds.; Edward Elgar Publishing: Cheltenham, UK; Northampton, UK, 2004; pp. 48–75. [Google Scholar]
- Fajardy, M.; Patrizio, P.; Daggash, H.A.; Mac Dowell, N. Negative Emissions: Priorities for Research and Policy Design. Front. Clim. 2019, 1, 6. [Google Scholar] [CrossRef]
- Vergragt, P.J.; Markusson, N.; Karlsson, H. Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in. Glob. Environ. Chang. 2011, 21, 282–292. [Google Scholar] [CrossRef]
- Torvanger, A. Governance of bioenergy with carbon capture and storage (BECCS): Accounting, rewarding, and the Paris agreement. Clim. Policy 2019, 19, 329–341. [Google Scholar] [CrossRef]
- Núñez-López, V.; Gil-Egui, R.; Hosseini, A.S. Environmental and Operational Performance of CO2-EOR as a CCUS Technology: A Cranfield Example with Dynamic LCA Considerations. Energies 2019, 12, 448. [Google Scholar] [CrossRef] [Green Version]
- Hussain, D.; Dzombak, D.A.; Jaramillo, P.; Lowry, G.V. Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods using different CO2 sources. Int. J. Greenh. Gas Control. 2013, 16, 129–144. [Google Scholar] [CrossRef]
- Turnheim, B.; Berkhout, F.; Geels, F.; Hof, A.; McMeekin, A.; Nykvist, B.; van Vuuren, D. Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Glob. Environ. Chang. 2015, 35, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Geels, F.W.; Verhees, B. Cultural legitimacy and framing struggles in innovation journeys: A cultural-performative perspective and a case study of Dutch nuclear energy (1945–1986). Technol. Forecast. Soc. Chang. 2011, 78, 910–930. [Google Scholar] [CrossRef]
- Geden, O.; Scott, V.; Palmer, J. Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e521. [Google Scholar] [CrossRef]
- IMO. Report of the 4th Meeting of the Contracting Parties to the London Protocol. LC 31/15; International Maritime Organization: London, UK, 2009. [Google Scholar]
- Dixon, T.; Garrett, J.; Kleverlaan, E. Update on the London Protocol—Developments on Transboundary CCS and on Geoengineering. Energy Procedia 2014, 63, 6623–6628. [Google Scholar] [CrossRef] [Green Version]
- IMO. Resolution LP.5(14) on the Provisional Application of the 2009 Amendment to Article 6 of the London Protocol; International Maritime Organization: London, UK, 2019. [Google Scholar]
- Möller, I. Political Perspectives on Geoengineering: Navigating Problem Definition and Institutional Fit. Glob. Environ. Politics 2020. [Google Scholar] [CrossRef]
- EU. Directive 2009/31/EC on the Geological Storage of Carbon Dioxide and Amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006, OJ L 140; The European Union: Brussels, Belgium, 2009. [Google Scholar]
- Schmidt, H.-P.; Hagemann, N.; Draper, K.; Kammann, C. The use of biochar in animal feeding. PeerJ 2019, 7, e7373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Brammer, J.G.; Wright, D.G.; Scott, J.A.; Serrano, C.; Bridgwater, A.V. Combined heat and power from the intermediate pyrolysis of biomass materials: Performance, economics and environmental impact. Appl. Energy 2017, 191, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, W.; Noble, A. The Role of Biochar in Ameliorating Disturbed Soils and Sequestering Soil Carbon in Tropical Agricultural Production Systems. Appl. Environ. Soil Sci. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dixon, T.; Leamon, G.; Zakkour, P.; Warren, L. CCS Projects as Kyoto Protocol CDM Activities. Energy Procedia 2013, 37, 7596–7604. [Google Scholar] [CrossRef] [Green Version]
- Nemet, G.F.; Callaghan, M.W.; Creutzig, F.; Fuss, S.; Hartmann, J.; Hilaire, J.; Lamb, W.F.; Minx, J.C.; Rogers, S.; Smith, P. Negative emissions—Part 3: Innovation and upscaling. Environ. Res. Lett. 2018, 13, 63003. [Google Scholar] [CrossRef] [Green Version]
- Stigson, P.; Haikola, S.; Hansson, A.; Buhr, K. Prospects for Swedish acceptance of carbon dioxide storage in the Baltic Sea: Learning from other energy projects. Greenh. Gases Sci. Technol. 2016, 6, 188–196. [Google Scholar] [CrossRef]
- Wallquist, L.; Seigo, S.L.O.; Visschers, V.H.M.; Siegrist, M. Public acceptance of CCS system elements: A conjoint measurement. Int. J. Greenh. Gas Control. 2012, 6, 77–83. [Google Scholar] [CrossRef]
- Workman, M.; Dooley, K.; Lomax, G.; Maltby, J.; Darch, G. Decision making in contexts of deep uncertainty—An alternative approach for long-term climate policy. Environ. Sci. Policy 2020, 103, 77–84. [Google Scholar] [CrossRef]
- Jonas, M.; Marland, G.; Krey, V.; Wagner, F.; Nahorski, Z. Uncertainty in an emissions-constrained world. In Uncertainties in Greenhouse Gas Inventories: Expanding Our Perspective; Ometto, J.P., Bun, R., Jonas, M., Nahorski, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–26. [Google Scholar]
- Jones, N. Safeguarding against Environmental Injustice: 1.5 Degree Celsius Scenarios, Negative Emissions, and Unintended Consequences Special Issue: Legal Aspects of the 1.5 Degree Celsius Target. Carbon Clim. Law Rev. 2018, 23, 23–30. [Google Scholar] [CrossRef]
- Hallstedt, S.I. Sustainability criteria and sustainability compliance index for decision support in product development. J. Clean. Prod. 2017, 140, 251–266. [Google Scholar] [CrossRef]
- Hansson, S.; Arfvidsson, H.; Simon, D. Governance for sustainable urban development: The double function of SDG indicators. Area Dev. Policy 2019, 4, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L. Fixing the Climate? How Geoengineering Threatens to Undermine the SDGs and Climate Justice. Development 2019, 62, 29–36. [Google Scholar] [CrossRef]
- Veltman, K.; Singh, B.; Hertwich, E.G. Human and Environmental Impact Assessment of Postcombustion CO2 Capture Focusing on Emissions from Amine-Based Scrubbing Solvents to Air. Environ. Sci. Technol. 2010, 44, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Badr, S.; Frutiger, J.; Hungerbuehler, K.; Papadokonstantakis, S. A framework for the environmental, health and safety hazard assessment for amine-based post combustion CO2 capture. Int. J. Greenh. Gas Control. 2017, 56, 202–220. [Google Scholar] [CrossRef]
- Joshi, P.; Bikkina, P.; Wang, Q. Consequence analysis of accidental release of supercritical carbon dioxide from high pressure pipelines. Int. J. Greenh. Gas Control. 2016, 55, 166–176. [Google Scholar] [CrossRef]
- Fuhrman, J.; McJeon, H.; Doney, S.C.; Shobe, W.; Clarens, A.F. From Zero to Hero?: Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better. Front. Clim. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- En, T.I.Y.; Giap, T.K.; Oei, L.T.; Yanjiang, Z. Global Liveable And Smart Cities Index: Ranking Analysis, Simulation and Policy Evaluation; World Scientific Publishing: Singapore, 2019. [Google Scholar]
Component | Indicator | Climate Stabilisation Value |
---|---|---|
Effectiveness | Global cooling potential | Positive value is inversely proportional to time from present until deployment. |
Removal inertia | Positive value is proportional to the speed of the carbon removal function. | |
Storage decay | Positive value is inversely proportional to storage decay rates. | |
Storage maintenance requirements | Positive value is inversely proportional to maintenance requirements, exposure, and sensitivity of the stored carbon. | |
Albedo change | Value is proportional to albedo change caused by a NET. | |
Direct emissions | Value is inversely proportional to the direct emission of greenhouse gases caused by the deployment of the NET. | |
Indirect emissions | Value is inversely proportional to indirect emissions caused by the deployment of the NET. | |
Efficiency | Energy efficiency | Positive value is inversely proportional to the energy requirement per unit of stored carbon. |
Resource intensity | Positive value is inversely proportional to the: | |
land area and quality required per unit of stored carbon, | ||
water required per unit of stored carbon, | ||
Phosphorus, nitrogen, and potassium required per unit of stored carbon. | ||
Cost | Positive value is inversely proportional to the cost per unit of stored carbon. | |
Scale | Technical potential | Positive value is proportional to the potential deployment scale of carbon removal from the atmosphere. |
Storage capacity | Positive value is proportional to storage capacity. | |
Non-rivalrous | Positive value is proportional to the ability to deploy a NET without competing with other NETs. | |
Technical integration | Positive value is proportional to the ability to integrate a NET into existing technical systems. | |
Juridical compatibility | Positive value is proportional to the compatibility of a NET with existing juridical and administrative systems. | |
Market compatibility | Value is proportional to the difference between specific costs of a NET and its capacity to raise revenues on existing markets. | |
Acceptance | Positive value is proportional to the level of acceptance of a NET. | |
Risk | Diagnostic and prognostic uncertainty | Positive value is proportional to the level of (biophysical) certainty of delivery of negative emissions. |
Investment risks, technical failure | Positive value is inversely proportional to the risk of technical failure. | |
Tipping points | Value is dependent on the timing of negative emissions relative to the global temperature peak, with more value for pre-peak than post-peak negative emissions. | |
Synergies | Multiple relevant indicators available | Value is proportional to positive and negative synergies with other policy objectives. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fridahl, M.; Hansson, A.; Haikola, S. Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects. Climate 2020, 8, 75. https://doi.org/10.3390/cli8060075
Fridahl M, Hansson A, Haikola S. Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects. Climate. 2020; 8(6):75. https://doi.org/10.3390/cli8060075
Chicago/Turabian StyleFridahl, Mathias, Anders Hansson, and Simon Haikola. 2020. "Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects" Climate 8, no. 6: 75. https://doi.org/10.3390/cli8060075