The Role of Mitigation Options for Achieving a Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Model
3.1. Demographic Sub-Model
3.2. Energy Sub-System
3.3. Environmental Sub-Model
3.4. Additional Assumptions
3.5. Model Validation
4. Results
4.1. Scenarios
4.2. Business as Usual Scenario
4.3. Policy Scenario Analysis
4.4. Sensitivity Analysis
5. Discussion
5.1. Key Findings
5.1.1. Renewable Energy Scenario versus Business-as-Usual Scenario
5.1.2. Renewable Energy Scenario versus Other SDMEP Policy Scenarios
5.1.3. Degree of Government Intervention in SDMEP Policy Scenarios
5.2. Model Uncertainties
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNFCC The Paris Agreement. Report of the Conference of the Parties on its Twenty-First Session, Held in Paris from 30 November to 11 December 2015; UNFCC: Paris, France, 2015. [Google Scholar]
- Knutti, R. Relationship between global emissions and global temperature rise. In Climate Change 2013: The Physical Science Basis; Working Group I contribution to the IPCC Fifth Assessment Report; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; The Intergovernmetnal Panel on Climate Change (IPCC): Geneva, Switzerland, 2018; p. 46. [Google Scholar]
- Ministerie van Economische Zaken. Energie Agenda: Naar een CO2 Arme Energievoorziening; Ministerie van Economische Zaken: Den Haag, The Netherlands, 2016; p. 120.
- CLO. Greenhouse gas emissions 1990–2015. Available online: www.clo.nl (accessed on 23 July 2017).
- ECN; PBL. Nationale Energieverkenning 2015; PBL: Den Haag, The Netherlands, 2015. [Google Scholar]
- CLO. Greenhouse gas emissions 1990–2019. Available online: https://www.clo.nl/indicatoren/nl0165-broeikasgasemissies-in-nederland (accessed on 12 July 2020).
- OECD Environmental Outlook to 2050: [The Consequences of Inaction]; OECD: Paris, France, 2012; ISBN 978-92-64-12224-6.
- WEC. World Energy Scenarios: Composing Energy Future to 2050; WEC: London, UK, 2013. [Google Scholar]
- Shell International Limited (SI). A Better Life with a Healthy Planet: Pathways to Net-Zero Emissions; Shell International Limited: London, UK, 2016. [Google Scholar]
- European Commission (Ed.) Energy Roadmap 2050; Energy; Publications Office of the European Union: Luxembourg, 2012; ISBN 978-92-79-21798-2. [Google Scholar]
- Ros, J.; Koelemeijer, R.; Elzenga, H.; Peters, J.; Hekkenberg, M. Towards a Clean Economy in 2050. An Outline of Roads. How the Netherlands can Become Climate-Neutral; (No. PBL--500083014); Planbureau voor de Leefomgeving PBL: The Hague, The Netherlands, 2011. [Google Scholar]
- CPB; PBL. Toekomstverkenning Welvaart en Leefomgeving; PBL: Den Haag, The Netherlands, 2015. [Google Scholar]
- PBL. Opties Voor Energie- en Klimaatbeleid; PBL: Den Haag, The Netherlands, 2016. [Google Scholar]
- European Commission. Energy Union and Climate Action: Driving EU’s Transition to a Low-carbon Economy; European Commission: Luxembourg, 2016. [Google Scholar]
- European Commission. EU Reference Scenario: Energy, Transport and GHG Emissions: Trends to 2050; European Commission: Luxembourg, 2016. [Google Scholar]
- Brouwer, F.; Vamvakeridou-Lyroudia, L.; Alexandri, E.; Bremere, I.; Griffey, M.; Linderhof, V. The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases. Sustainability 2018, 10, 4860. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, K. Policy Instruments on Mitigation Options for a Low-carbon Economy in the Netherlands in 2050. Master’s Thesis, Wageningen University and Wageningen Economic Research, Wageningen, The Netherlands, 2017. [Google Scholar]
- Forrester, J.W. Industrial Dynamics; MIT Press: Cambridge, MA, USA, 1961; Volume 1, pp. 1–464. [Google Scholar]
- Jackson, M.C.; Keys, P. Towards a System of Systems Methodologies. J. Oper. Res. Soc. 1984, 35, 473–486. [Google Scholar] [CrossRef]
- Simonovic, S.P. World water dynamics: Global modeling of water resources. J. Environ. Manag. 2002, 66, 249–267. [Google Scholar] [CrossRef]
- Sušnik, J.; Molina, J.-L.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Comparative analysis of system dynamics and object-oriented bayesian networks modelling for water systems management. Water Resour. Manag. 2013, 27, 819–841. [Google Scholar] [CrossRef]
- Naill, R.F. A system dynamics model for national energy policy planning. Syst. Dyn. Rev. 1992, 8, 1–19. [Google Scholar] [CrossRef]
- Dyner, I.; Smith, R.A.; Peña, G.E. System Dynamics Modelling for Residential Energy Efficiency Analysis and Management. J. Oper. Res. Soc. 1995, 46, 1163–1173. [Google Scholar] [CrossRef]
- Kibira, D.; Shao, G.; Nowak, S. Publications, Agencies and Staff of the U.S. Department of Commerce; U.S. Department of Commerce: Washington, DC, USA, 2010.
- Ahmad, S.; Mat Tahar, R.; Muhammad-Sukki, F.; Munir, A.B.; Abdul Rahim, R. Application of system dynamics approach in electricity sector modelling: A review. Renew. Sustain. Energy Rev. 2016, 56, 29–37. [Google Scholar] [CrossRef]
- Ford, A. Modeling the Environment, 2nd ed.; Island Press: Washington, DC, USA, 2010; ISBN 978-1-59726-472-3. [Google Scholar]
- Bolwig, S.; Bazbauers, G.; Klitkou, A.; Lund, P.D.; Blumberga, A.; Gravelsins, A.; Blumberga, D. Review of modelling energy transitions pathways with application to energy system flexibility. Renew. Sustain. Energy Rev. 2019, 101, 440–452. [Google Scholar] [CrossRef]
- Roberts, N.; Andersen, D.F.; Deal, R.M.; Garet, M.S.; Shaffer, W.A. Introduction to Computer Simulation: The System Dynamics Approach; Addison-Wesley Publishing Company: Boston, MA, USA, 1983; ISBN 0-201-06414-6. [Google Scholar]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Liu, X.; Mao, G.; Ren, J.; Li, R.Y.M.; Guo, J.; Zhang, L. How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model. J. Clean. Prod. 2015, 103, 401–410. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Guo, X. Can China achieve its 2020 carbon intensity target? A scenario analysis based on system dynamics approach. Ecol. Indic. 2016, 71, 99–112. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Chen, S.Q.; Zhang, L.X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Ansari, N.; Seifi, A. A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios. Energy Policy 2013, 58, 75–89. [Google Scholar] [CrossRef]
- Isee Systems. Available online: http://www.iseesystems.com (accessed on 12 July 2020).
- European Commission. The 2015 Ageing Report: Underlying Assumptions and Projection Methodologies; European Commission: Luxembourg, 2014. [Google Scholar]
- IEA. World Energy Outlook 2010; World Energy Outlook; OECD Publishing: Paris, France, 2010; ISBN 978-92-64-08624-1. [Google Scholar]
- European Commission. Proposal for Directive of the European Parliament and of the Council mending Directive 2012/27/EU on Energy Efficiency; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Capros, P. PRIMES Energy System Model: Overview of PRIMES Modelling Approach; E3MLab-National Technical University of Athens: Athens, Greece, 2010. [Google Scholar]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- CE Delft. Kosteneffectiviteit Van Maatregelen Voor CO2-Reductie in Nederland; CE Delft: Delft, The Netherlands, 2017. [Google Scholar]
- CE Delft. Economische Ontwikkelingen Energie-Intensieve Sectoren; CE Delft: Delft, The Netherlands, 2014. [Google Scholar]
- Snyder, L.D.; Miller, N.H.; Stavins, R.N. The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing. Am. Econ. Rev. 2003, 93, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Bailey, I. Market Environmentalism, New Environmental Policy Instruments, and Climate Policy inthe United Kingdom and Germany. Ann. Assoc. Am. Geogr. 2007, 97, 530–550. [Google Scholar] [CrossRef]
- SER. Biomassa in Balans: Een Duurzaamheidskader Voor Hoogwaardige Inzet Van Biogrondstoffen; Sociaal Economische Raad/Economic and Social Council (SER): Den Haag, The Netherlands, 2020; p. 113. [Google Scholar]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
Initial Stock Values | Unit * | Initial Value | Source |
---|---|---|---|
Household income per capita (HH income) | € | 15,735 | [36] |
Population (POP) | mln | 16.6 | [36] |
Added value services sector (SE) | bn € | 333 | [36] |
Added value agricultural sector (AR) | bn € | 10.6 | [36] |
Added value industry and energy (IE) | bn € | 136.8 | [36] |
Added value transport (TR) | bn € | 114.6 | [36] |
Primary energy demand per year (HH) | ktoe | 11,518.4 | [16] |
Primary energy demand per year (SE) | ktoe | 8822.0 | [16] |
Primary energy demand per year (AR) | ktoe | 4302.0 | [16] |
Primary energy demand per year (IE) | ktoe | 29,402.3 | [16] |
Primary energy demand per year (TR) | ktoe | 14,984.7 | [16] |
Initial CCS | ktoe | 0 | [14] |
Growth Rates | 2010–2020 | 2020–2030 | 2030–2040 | 2040–2050 | Source |
---|---|---|---|---|---|
Household income growth rate | 0.7% | 1.1% | 1.5% | 0.19% | [36] |
Population growth rate | 0.3% | 0.2% | −0.05% | −0.05% | [36] |
Growth rates of value added per sector | |||||
Services sector | 0.8% | 1.1% | 1.4% | 1.6% | [36] |
Agricultural sector | 1.1% | 0.6% | −0.2% | 0.1% | [36] |
Industry and energy sector | 1.2% | 0.8% | 1.3% | 2.2% | [36] |
Transport sector | 0.8% | 0.9% | 1.1% | 0.5% | [36] |
Renewable energy primary production | 10.5% | 1.4% | 1.2% | 1.2% | [16] |
Parameter Values | Initial Value | Source |
---|---|---|
Energy intensity growth rate (HH) | −0.0012 | Calibrated |
Energy intensity growth rate (SE) | −0.0012 | Calibrated |
Energy intensity growth rate (AR) | −0.0133 | Calibrated |
Energy intensity growth rate (IE) | −0.0078 | Calibrated |
Energy intensity growth rate (TR) | −0.01 | Calibrated |
Energy intensity elasticity of income | −0.0816 | Calibrated |
Energy intensity elasticity of non-renewable energy (NRE) prices | −0.281 | Calibrated |
Carbon intensity (MtCO2/ktoe) | 0.002655 | [16] |
Direct energy efficiency investment cost per ktoe (mln €) | 579 | [38] |
Costs CCS per MtCO2 (mln €/MtCO2) | 50 | [14] |
CCU (ktoe) | 3 | [14] |
Key Energy Indicators | Base Year | Projection | ||
---|---|---|---|---|
REF2016 | BaU | Error Margin | ||
2010 | 2050 | |||
Energy Intensity (ktoe/bn €) Households (HH) Service sector (SE) Agricultural sector (AR) Industry and energy sector (IE) Transport sector (TR) | 44 28 418 234 139 | 23 14 202 131 88 | 21.3 13.7 200.3 123.3 81.4 | 7.4% 0.7% 0.8% 5.9% 7.5% |
Total primary energy demand( PED) (ktoe) Households (HH) Service sector (SE) Agricultural sector (AR) Industry and energy sector (IE) Transport sector (TR) | 69,030 11,518 8822 4302 29,402 14,985 | 59,530 10,645 7026 3426 24,790 13,643 | 59,537 10,554 7189 2244 27,104 12,446 | 0.0% 0.1% 2.3% 34.5% 9.3% 8.8% |
RE production (ktoe) | 3671 | 14,473 | 15,594 | 7.7% |
CO2 emissions released per year (MtCO2) | 175 | 112 | 114 | 1.8% |
Key Energy Indicators. | Mitigation Options | Policy Instruments | ||||||
---|---|---|---|---|---|---|---|---|
Scenarios | Average Energy Intensity (ktoe/€) | Primary Energy Demand (ktoe) | Share RE of Total PED (%) | Renewable Energy Production (ktoe) | Accumulated * Energy Savings (ktoe) | Accumulated * CCS (MtCO2) | Carbon Levy per ton CO2 (€) | Accumulated * Subsidy Amount (€ bn) |
1. BaU | 172.6 | 59,538 | 26.2 | 15,594 | - | - | - | - |
2. RE policy | 87.8 | 59,370 | 78.8 | 46,190 | - | - | 4.75 | 9.6 |
3. ES policy | 87.4 | 59,117 | 77.8 | 45,993 | 40 | 434 | 11.00 | 22.8 |
4. CCS policy | 87.5 | 59,182 | 72.2 | 42,751 | - | - | 10.20 | 22.1 |
5. Integrated policy | 87.8 | 59,349 | 77.4 | 45,910 | 2 | 21 | 5.30 | 10.7 |
Impact NRE EI Elasticity. | Impact Income EI Elasticity | |||
---|---|---|---|---|
Change of Elasticities | NRE EI Elasticity | Total PED (Mtoe) | Income EI Elasticity | Total PED (Mtoe) |
Initial | −0.2810 | 59.5 | −0.0816 | 59.5 |
−25% | −0.2110 (+25%) | 62.4 (+5%) | −0.0612 (+25%) | 60.1 (+1%) |
+25% | −0.3510 (−25%) | 56.8 (−4.5%) | −0.1020 (−25%) | 59.0 (−0.8%) |
Price Elasticities | Total RE (Mtoe) in 2050 | Annual CO2 Emissions (Mt) in 2050 | Carbon Levy (€ per ton CO2) | |
---|---|---|---|---|
Cross Elasticity. | Normal Elasticity. | |||
* | * | 46.2 * | 34 * | 4.75 * |
+25% | - | +7.8% | −27.6% | |
- | +25% | +9.1% | −31.5% | |
+25% | +25% | +17.1% | −58.8% | |
+25% | +25% | 0.0% | 0.0% | -20% |
−25% | - | −7.4% | +23.5% | |
- | −25% | −10.0% | +32.4% | |
−25% | −25% | −16.9% | +55.9% | |
−25% | −25% | 0.0% | 0.0% | +33% |
Energy Saving (ES) Scenario | CCS Scenario | |||||
---|---|---|---|---|---|---|
Change in CONVERSION Factor | Conversion Factor ES (mln €) | Accumulated Energy Savings (ktoe) | Annual CO2 Emissions (Mt) in 2050 | Conversion Factor CCS (mln €) | Accumulated CCS (MtCO2) | Annual CO2 Emissions (Mt) in 2050 |
Initial | 579 * | 40 * | 34 * | 50 * | 434 * | 34 * |
−25% | −25% | +30% | −0.03% | −25% | +33.2% | −7.9% |
+25% | +25% | −82.5% | 0.00% | +25% | −20% | +4.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linderhof, V.; Dekkers, K.; Polman, N. The Role of Mitigation Options for Achieving a Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling Approach. Climate 2020, 8, 132. https://doi.org/10.3390/cli8110132
Linderhof V, Dekkers K, Polman N. The Role of Mitigation Options for Achieving a Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling Approach. Climate. 2020; 8(11):132. https://doi.org/10.3390/cli8110132
Chicago/Turabian StyleLinderhof, Vincent, Kristie Dekkers, and Nico Polman. 2020. "The Role of Mitigation Options for Achieving a Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling Approach" Climate 8, no. 11: 132. https://doi.org/10.3390/cli8110132
APA StyleLinderhof, V., Dekkers, K., & Polman, N. (2020). The Role of Mitigation Options for Achieving a Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling Approach. Climate, 8(11), 132. https://doi.org/10.3390/cli8110132