Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations
Abstract
:1. Introduction
2. Methods
2.1. Data and Rationale
2.2. Analytic Protocols and Programs
2.3. Limitations
3. Results and Discussion
3.1. Wind and Temperature at EDC
3.2. Wind at EDC versus Temperature Across Eleven Antarctic Drill Sites
3.3. Wind and Temperature at Vostok
3.3.1. The Holocene
3.3.2. The Last 22 Millennia
3.3.3. The Last 75 Millennia
3.3.4. The Last 226 Millennia
4. Discussion and Conclusions
4.1. Climate Mechanisms of the ACO/AAO
4.2. Antarctic Wind Oscillations Throughout Climate History
4.3. The Origin and Climate Mechanisms of the MWP/LIA
4.4. The Origin and Climate Mechanisms of the AIM, Bond and Heinrich Cycles
4.5. Hindcasting Global Climate
4.6. Forecasting Global Climate
4.7. Implications for Climate Science and Policy
4.8. Attributing Causality in the Global Warming Debate
“We may define a cause to be an object followed by another, and where all the objects, similar to the first, are followed by objects similar to the second. Or, in other words, where, if the first object had not been, the second never had existed”.[101] (Section VII)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAO | Antarctic Oscillation |
ACO | Antarctic Centennial Oscillation |
ACWO | Antarctic Centennial Wind Oscillation |
AGW | Anthropogenic Global Warming |
AIM | Antarctic Isotope Maximum |
AIW | Antarctic Intermediate Water |
°C | Degrees Celsius |
CE | Current Era |
CO2 | Carbon dioxide |
D-O | Dansgaard–Oeschger |
δ2H | Deuterium (temperature proxy) |
EAP | East Antarctic Plateau |
EDC | EPICA Dome C |
GIA | Great Ice Age |
Ky | Thousand years |
Kyb1950 | Thousand years before 1950 |
LD | Law Dome |
LGM | Last Glacial Maximum |
LGT | Last Glacial Termination |
LIA | Little Ice Age |
MWP | Medieval Warm Period |
MIS(s) | Marine Isotope Stage(s) |
N | North |
NGW | Natural Global Warming |
NH | Northern Hemisphere |
‰ | per mil |
RCP | Recurrent Cold Period |
RWP | Recurrent Warm Period |
RO | Relaxation Oscillation |
S | South |
SH | Southern Hemisphere |
SM | Supplementary Materials |
SO | Southern Ocean |
σ | Standard deviation |
TSI | Total Solar Irradiance |
UV | Ultraviolet radiation |
v. | versus |
WT | Wind Terminus |
WW(s) | Westerly Wind(s) |
Yb1950 | Years before 1950 |
Ybp | Years before present |
References
- National Aeronautic and Space Administration (NASA). 2019. Available online: https://climate.nasa.gov/climate_resources/139/graphic-global-warming-from-1880-to-2018/ (accessed on 9 October 2020).
- Brohan, P.; Kennedy, J.J.; Harris, I.; Tett, S.F.B.; Jones, P.D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 2006, 111, D12106. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis; Houghton, J.T., Ed.; Cambridge University Press: New York, NY, USA, 2001; Available online: http://cedadocs.ceda.ac.uk/981/8/Chapter_7.pdf (accessed on 3 March 2019).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Solomon, S., Ed.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; Available online: http://www.slvwd.com/agendas/Full/2007/06-07-07/Item%2010b.pdf (accessed on 3 March 2019).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Stocker, T.F., Ed.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; Available online: http://www.climatechange2013.org/images/report/WG1AR5_Frontmatter_FINAL.pdf (accessed on 3 March 2019).
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Rudy, R.A. Atmospheric CO2: Principal control knob governing earth’s temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, W.J. The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate 2017, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Mudelsee, M. The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Ouat. Sci. Rev. 2001, 20, 583–589. [Google Scholar] [CrossRef]
- Shakun, J.D.; Clark, P.U.; He, F.; Marcott, S.A.; Mix, A.C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49–54. [Google Scholar] [CrossRef]
- Pedro, J.B.; Rasmussen, S.O.; van Ommen, T.D. Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Clim. Past 2012, 8, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Lieu, A.; Huang, S.; Jin, Z. Breakpoint lead-lag analysis of the last deglacial climate change and atmospheric CO2 concentration on global and hemispheric scales. Quat. Int. 2018, 490, 50–59. [Google Scholar] [CrossRef]
- Davis, W.J.; Taylor, P.J.; Davis, W.B. The Antarctic Centennial Oscillation: A natural paleoclimate cycle in the Southern Hemisphere that influences global temperature. Climate 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Davis, W.J.; Taylor, P.J.; Davis, W.B. The origin and propagation of the Antarctic Centennial Oscillation. Climate 2019, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, J.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, J.; Delaygue, G.; et al. Vostok Ice Core Data for 420,000 Years; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 2001. Available online: Ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt (accessed on 3 March 2019).
- Lambert, F.; Bigler, M.; Steffensen, J.P.; Hutterli, M.; Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 2012, 8, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Rea, D.K. The paleoclimatic record provided by Eolian deposition in the deep sea: The geologic history of wind. Rev. Geophys. 1994, 32, 159–195. [Google Scholar]
- Yan, Y.; Mayewski, P.A.; Kang, S.; Meyerson, E. An ice-core proxy for Antarctic circumpolar zonal wind intensity. Ann. Glaciol. 2005, 41, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Ruth, U.R.S.; Barbante, C.; Bigler, M.; Delmonte, B.; Fischer, H.; Gabrielli, P.; Gaspari, V.; Kaufmann, P.; Lambert, F.; Maggi, V.; et al. Proxies and measurement techniques for mineral dust in Antarctic ice cores. Environ. Sci. Technol. 2008, 42, 5675–5681. [Google Scholar] [CrossRef]
- Schüpbach, S.; Federer, U.; Kaufmann, P.R.; Albani, S.; Barbante, C.; Stocker, T.F.; Fischer, H. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core. Clim. Past 2013, 9, 2789–2807. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, H.; Vleeschouwer, F.D.; Martínez-Cortizas, A.; von Scheffer, C.; Piotrowska, N.; Coronato, A.; Le Roux, G. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America. Sci. Rep. 2015, 5, 11670. [Google Scholar] [CrossRef] [Green Version]
- Delmonte, B.; Andersson, P.S.; Schöberg, H.; Hansson, M.; Petit, J.R.; Delmas, R.; Gaiero, D.M.; Maggi, V.; Frezzotti, M. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: Preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat. Sci. Rev. 2010, 29, 256–264. [Google Scholar] [CrossRef]
- Delmonte, B.; Basile-Doelsch, I.; Petit, J.-R.; Maggi, V.; Revel-Rolland, M.; Michard, A.; Jagoutz, E.; Grousset, F. Comparing the Epica and Vostok dust records during the last 220,000 years: Stratigraphical correlation and provenance in glacial periods. Earth-Sci. Rev. 2004, 66, 63–87. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 2007, 317, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Kemp, L. The Lifespans of Ancient Civilizations. 2019. Available online: http://www.bbc.com/future/story/20190218-the-lifespans-of-ancient-civilisations-compared (accessed on 9 October 2020).
- De Menocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Marx, W.; Haunschild, R.; Bornmann, L. Climate and the decline and fall of the western Roman Empire: A bibliometric view on an interdisciplinary approach to answer a most classic historical question. Climate 2018, 6, 90. [Google Scholar]
- D’Andrea, W.J.; Yongsong, H.; Fritz, S.C.; Anderson, N.J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl. Acad. Sci. USA 2011, 108, 9765–9769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taagepera, R. Size and duration of empires growth-decline curves, 3000 to 600 B.C. Soc. Sci. Res. 1978, 7, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Finné, M.; Holmgren, K.; Shen, C.-C.; Hu, H.-M.; Boyd, M.; Stocker, S. Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos. PLoS ONE 2017, 12, e0189447. [Google Scholar] [CrossRef] [Green Version]
- Roemer, H.R. The Safavid Period. In The Cambridge History of Iran; Jackson, P., Lockhart, L., Eds.; University Press: Cambridge, UK, 1986; pp. 189–350. ISBN 0 521020094 6. [Google Scholar]
- Sampson, G.C. The Defeat of Rome: Crassus, Carrhae and the Invasion of the East; Pen & Sword Books: South Yorkshire, UK, 2008; ISBN 978-1-84415-676-4. [Google Scholar]
- Van der Pol, B. On “relaxation-oscillations”. Lond. Edin. Dub. Philosoph. Mag. J. Sci. 1926, 11, 978–992. [Google Scholar] [CrossRef]
- Van der Pol, B.; Van der Mark, J. Frequency demultiplication. Nature 1927, 120, 363–364. [Google Scholar] [CrossRef]
- Blunier, T.; Chappellaz, J.; Schwander, J.; Dällenbach, A.; Stauffer, B.; Stocker, T.F.; Raynaud, D.; Jouzel, J.; Clausen, H.B.; Hammer, C.U.; et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 1998, 394, 739–743. [Google Scholar]
- Blunier, T.; Brook, E.J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 2001, 291, 109–112. [Google Scholar] [CrossRef]
- EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 2006, 444, 195–198. [Google Scholar] [CrossRef]
- Veres, D.; Bazin, L.; Landais, A.; Kele, T.H.M.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; et al. The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 2013, 9, 1733–1748. [Google Scholar] [CrossRef] [Green Version]
- Källén, E.; Crafoord, C.; Ghil, M. Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci. 1979, 36, 2292–2393. [Google Scholar] [CrossRef]
- Ghil, M.; Le Treut, H.A. Climate model with cryodynamics and geodynamics. J. Geophys. Res. Oceans 1981, 86, 5262–5270. [Google Scholar] [CrossRef]
- Yiou, P.; Ghil, M.; Jouzel, J.; Paillard, D.; Vautard, R. Nonlinear variability of the climatic system from singular and power spectra of Late Quaternary records. Clim. Dyn. 1994, 9, 371–389. [Google Scholar] [CrossRef]
- Paillard, D. Glacial cycles: Toward a new paradigm. Rev. Geophys. 2001, 39, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Crucifix, M. Oscillators and relaxation phenomena in Pleistocene climate theory. Philos. Trans. R. Soc. A 2012, 370, 1140–1165. [Google Scholar] [CrossRef] [Green Version]
- Pedro, J.B.; Martin, T.; Steig, E.J.; Jochum, M.; Park, W.; Rasmussen, S.O. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett. 2016, 43, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, R.; Bertler, N.A.N.; Baker, J.A.; Steen-Larsen, H.C.; Sneed, S.B.; Morgenstern, U.; Johnsen, S.J. Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Clim. Past 2012, 8, 1223–1238. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Hellmann, L. The Little Ice Age in scientific perspective: Cold spells and caveats. J. Interdiscip. Hist. 2014, 44, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Mann, M.E. Climate over past millennia. Rev. Geophys. 2004, 42, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Fauria, M.M.; Mielikäinen, K.; Timonen, M.; Eronen, M. Sub-Milankovitch solar forcing of past climates: Mid and late Holocene perspectives. GSA Bull. 2010, 122, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
- Ueno, Y.; Hyodo, M.; Yang, T.; Katoh, S. Intensified East Asian winter monsoon during the last geomagnetic reversal transition. Sci. Rep. 2019, 9, 9389. [Google Scholar] [CrossRef] [PubMed]
- Kitaba, I.; Hyodo, M.; Katoh, S.; Dettman, D.L.; Sato, H. Mid-latitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA 2013, 110, 1215–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goosse, H.; Crespin, E.; Dubinkina, S.; Loutre, M.-F.; Mann, M.E.; Renssen, H.; Sallaz-Damaz, Y.; Shindell, D. The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Clim. Dyn. 2012, 39, 2847–2866. [Google Scholar] [CrossRef] [Green Version]
- Goosse, H.; Arzel, O.; Luterbacher, J.; Mann, M.E.; Renssen, H.; Riedwyl, N.; Timmermann, A.; Xoplaki, E.; Wanner, H. The origin of the European “Medieval Warm Period”. Clim. Past 2008, 2, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Timonen, M.; Holopainen, J.; Ogurtsov, M.G.; Mielikäinen, K.; Eronen, M.; Lindholm, M.; Meriläinen, J. Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. J. Quat. Sci. 2009, 24, 450–456. [Google Scholar]
- Koffman, B.G.; Kreutz, K.J.; Breton, D.J.; Kane, E.J.; Winski, D.A.; Birkel, S.D.; Kurbatov, A.V.; Handley, M.J. Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia. Clim. Past 2014, 10, 1125–1144. [Google Scholar] [CrossRef] [Green Version]
- Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S.P.; Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 2011, 30, 3109–3123. [Google Scholar] [CrossRef]
- Wagner, G.; Beer, J.; Masarik, J.; Muscheler, R.; Kubik, P.W.; Scherrer, P.; Mende, W.; Laj, C.; Raisbeck, G.M.; Yiou, F. Presence of the solar de Vries cycle (205 years) during the last ice age. Geophys. Res. Lett. 2001, 28, 303–306. [Google Scholar]
- Polissar, P.J.; Abbott, M.B.; Wolfe, A.P.; Bezada, M.; Rull, V.; Bradley, R.S. Solar modulation of Little Ice Age climate in the tropical Andes. Proc. Natl. Acad. Sci. USA 2006, 103, 8937–8942. [Google Scholar] [CrossRef] [Green Version]
- Kroonenberga, S.B.; Abdurakhmanovb, G.M.; Badyukovac, E.N.; van der Borgd, K.; Kalashnikove, A.; Kasimovc, N.S.; Rychagovc, G.I.; Svitochc, A.A.; Vonhoff, H.B.; Wesselinghg, F.P. Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat. Int. 2007, 173–174, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Nesme-Ribes, E.; Mangeney, A. On a plausible physical mechanism linking the Maunder Minimum to the Little Ice Age. Radiocarbon 1992, 34, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; OttoBliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, L02708. [Google Scholar] [CrossRef] [Green Version]
- Slawinska, J.; Robock, A. Impact of volcanic eruptions on decadal to centennial fluctuations or Arctic sea ice extent during the last millennium and on initiation of the Little Ice Age. J. Clim. 2018, 31, 2145–2167. [Google Scholar] [CrossRef]
- Schleussner, C.F.; Feulner, G. A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Clim. Past 2013, 9, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Gallet, Y.; Genevey, A.; Fluteau, F. Does Earth’s magnetic field secular variation control centennial climate change? Earth Plan. Sci. Lett. 2005, 236, 339–347. [Google Scholar] [CrossRef]
- Miyahara, H.; Yokoyama, Y.; Masuda, K. Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity. Earth Plan. Sci. Lett. 2008, 272, 290–295. [Google Scholar] [CrossRef]
- Scafetta, N. Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmosph. Sol.-Terrest. Phys. 2010, 72, 951–970. [Google Scholar] [CrossRef] [Green Version]
- Braun, H.; Christl, M.; Rahmstorf, S.; Ganopolski, A.; Mangini, A.; Kubatzki, C.; Roth, K.; Kromer, B. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature 2005, 438, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Damon, P.E.; Jirikowic, J.L. The sun as a low-frequency harmonic oscillator. Radiocarbon 1992, 34, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Zharkova, V.V.; Shepherd, S.J.; Zarkov, S.I.; Popova, E. Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale. Sci. Rep. 2019, 9, 9197. [Google Scholar] [CrossRef] [PubMed]
- Steinhilbera, F.; Jose, A.; Abreua, J.A.; Beera, J.; Irene Brunnera, I.; Christlb, M.; Fischerc, H.; Heikkiläd, U.; Kubikb, P.W.; Manna, M.; et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 2012, 109, 5967–5971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-J.; Usoskin, I.G.; Krivova, N.; Kovaltsov, G.A.; Baroni, M.; Bard, E.; Solanki, S.K. Solar activity over nine millennia: A consistent multi-proxy reconstruction? Astrom. Astrophys. 2018, 615, A93. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-J.; Krivova1, N.A.; Solanki, S.K.; Usoskin, I.G. Solar total and spectral irradiance reconstruction over the last 9000 years. Astrom. Astrophys. 2018, 620, A120. [Google Scholar] [CrossRef] [Green Version]
- Solanki, S.K.; Usoskin, I.G.; Kromer, B.; Schüssler, M.; Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Zharkova, V.V.; Shepherd, S.J.; Popova, E.; Zharkov, S.I. Heartbeat of the Sun from principal component analysis and prediction of solar activity on a millenium timescale. Sci. Rep. 2015, 5, 15689. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J.; Brook, E.J.; White, J.W.C.; Sucher, C.M.; Bender, M.L.; Lehman, S.J.; Morse, D.L.; Waddington, E.D.; Clow, G.D. Synchronous climate changes in Antarctica and the North Atlantic. Science 1998, 282, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Morgan, V.; Delmotte, M.; van Ommen, T.; Jouzel, J.; Chappellaz, J.; Woon, S.; Masson-Delmotte, V.; Raynaud, D. Relative timing of deglacial climate events in Antarctica and Greenland. Science 2002, 297, 1862–1864. [Google Scholar] [CrossRef] [Green Version]
- Andres, M.S.; Bernasconi, S.I.; McKenzie, J.A.; Röhl, U. Southern Ocean deglacial record supports global Younger Dryas. Earth Plan. Sci. Lett. 2003, 216, 515–524. [Google Scholar] [CrossRef]
- Brook, E.J.; White, J.W.C.; Schilla, A.S.M.; Bender, M.L.; Barnett, B.; Severinghaus, J.P.; Taylor, K.C.; Alley, R.B.; Steig, E.J. Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quat. Sci. Rev. 2005, 24, 1333–1343. [Google Scholar] [CrossRef]
- Stenni, B.; Buiron, D.; Frezzotti, M.; Albani, S.; Barbante, C.; Bard, E.; Barnola, J.M.; Baroni, M.; Baumgartner, M.; Bonazza, M.; et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 2011, 4, 46–49. [Google Scholar] [CrossRef]
- Tachikawa, K.; Timmermann, A.; Vidal, L.; Sonzogni, C.; Timm, O.E. CO2 radiative forcing and Intertropical Convergence Zone influences on western Pacific warm pool climate over the past 400 ka. Quat. Sci. Rev. 2014, 86, 24–34. [Google Scholar] [CrossRef]
- Stocker, T.F.; Johnsen, S.J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 2003, 18, 1097. [Google Scholar] [CrossRef]
- Landais, A.; Masson-Delmotte, V.; Stenni, B.; Selmo, E.; Roche, D.M.; Jouzel, J.; Lambert, F.; Guillevic, M.; Bazin, L.; Arzel, O.; et al. A review of the bipolar see-saw from synchronized and high-resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev. 2015, 114, 18–32. [Google Scholar] [CrossRef]
- WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 2015, 520, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Buizert, C.; Sig, M.; Severi, M.; Markle, B.R.; Wettstein, J.J.; McConnell, J.R.; Pedro, J.B.; Sodemann, H.; Goto-Azuma, K.; Kawamura, K.; et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 2018, 563, 681–685. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; de Menocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Hulbe, C.L.; MacAyeal, D.R.; Denton, G.H.; Kleman, J.; Lowell, T.V. Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography 2004, 19, PA1004. [Google Scholar] [CrossRef] [Green Version]
- Pedro, J.B.; van Ommen, T.D.; Rasmussen, S.O.; Morgan, V.I.; Chappellaz, J.; Moy, A.D.; Masson-Delmotte, V.; Delmotte, M. The last deglaciation: Timing the bipolar seesaw. Clim. Past 2011, 7, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-Y.; Chuang, C.C.; Klein, S.A.; Lo, M.-H.; Zhang, Y.; Xie, S.; Zheng, X.; Ma, P.-L.; Zhang, Y.; Phillips, T.J. An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst. 2015, 7, 1810–1827. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Greatbatch, R.J.; Latif, M.; Park, W.; Gerdes, R. Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Clim. 2013, 26, 7650–7661. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Evaluation of short-term climate change prediction in multi-model CMIP% decadal hindcasts. Geophys. Res. Let. 2012. [Google Scholar] [CrossRef]
- Smith, D.M.; Cusack, S.; Colman, A.W.; Folland, C.K.; Harris, G.R.; Murphy, J.M. Improved surface temperature prediction for the coming decade from a global climate model. Science 2007, 317, 796–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, T.; Ishii, M.; Kimoto, M.; Chikamoto, Y.; Watanabe, M.; Nozawa, T.; Sakamoto, T.T.; Shiogama, H.; Awaji, T.; Sugiura, N.; et al. Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA 2010, 107, 1833–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Waliser, D.E.; Mattmann, C.A.; Goodale, C.E.; Hart, A.F.; Zimdars, P.A.; Crichton, D.J.; Jones, C.; Nikulin, G.; Hewitson, B.; et al. Evaluation of the CORDEX-Africa multi-RCM hindcast: Systematic model errors. Clim. Dyn. 2014, 42, 1189–1202. [Google Scholar] [CrossRef]
- Davis, P.T.; Menounos, B.; Osborn, G. Holocene and latest Pleistocene alpine glacier fluctuations: A global perspective. Quatern. Sci. Rev. 2009, 21–22, 2021–2033. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Q.F.; Song, H.M.; An, Z.S.; Hans, W.L. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin. Sci. Bull. 2011, 56, 2986–2994. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.J. Chill: A Reassessment of Global Warming Theory; Clairview Books: East Sussex, UK, 2009. [Google Scholar]
- Hsu, K.J. Sun, climate, hunger and mass migration. Sci. China Ser. D-Earth Sci. 1998, 41, 449–472. [Google Scholar] [CrossRef]
- Diamond, J. Collapse: How Societies Choose to Fail or Succeed; Penguin: London, UK, 2005. [Google Scholar]
- Lockwood, M.; Owens, M.; Hawkins, E.; Jones, G.S.; Usoskin, I. Frost fairs, sunspots and the Little Ice Age. Astron. Geophys. 2017, 58, 2.17–2.23. [Google Scholar] [CrossRef] [Green Version]
- Hume, D. Enquiry into the Human Understanding; Clarendon Press: Oxford, UK, 1748. [Google Scholar]
- Menzies, P.; Beebee, H. Counterfactual Theories of Causation. 2001/2019. Available online: https://plato.stanford.edu/entries/causation-counterfactual/ (accessed on 9 October 2020).
- Lewis, D. Counterfactuals; Blackwell: Oxford, UK, 1973. [Google Scholar]
- Lewis, D. Causation. J. Philos. 1973, 70, 556–567. [Google Scholar] [CrossRef]
- Lewis, D. Causation as influence. In Causation and Counterfactuals; Collins, J., Hall, N., Paul, L., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 75–106. [Google Scholar]
1. Antarctic Drill Site (Exemplified by Figures in Parentheses) | 2. Period Analyzed, Years before 1950 (Yb1950) | 3. Periodicity Visible in Cross-Correlogram | 4. Centennial Period Estimated from Cross-Correlogram (years) | 5. Measured ACO/AAO Period over Same Time at Vostok (Years) | 6. Percent Difference | 7. Percent Cycles with Statistically- Discernible r Values |
---|---|---|---|---|---|---|
Law Dome | 13,040–9020 | Centennial and millennial | 287.1 | 212.0 | 26.2% | 64.3% (9/14) |
TALDICE (Figure 3b) | 13,040–9020 | Centennial and millennial | 200.0 | 212.0 | −5.7% | 63.2% (12/19) |
Siple | 13,040–9020 | Centennial and millennial | 243.8 | 212.0 | 13.0% | 62.5% (10/16) |
Byrd | 13,040–9020 | Centennial and millennial | 211.0 | 212.0 | −0.5% | 63.2% (12/19) |
James Ross Island | 4020–380 | Centennial and millennial | 148.0 | 186.0 | −26.2% | 44.0% (11/25) |
EPICA Dronning Maud Land | 2043–443 | Centennial and millennial | 131.8 | 145 | −9.1% | 45.5% (5/11) |
Dome Fuji | 3980–360 | Centennial and millennial | 162.8 | 186.0 | −12.5% | 42.9% (9/21) |
Vostok (Figure 4b) | 2000–380 | Centennial | 200.0 | 145.5 | 27.3% | 57.1% (4/7) |
Vostok (Figure 5) | 4020–380 | Centennial | 183.2 | 186 | −1.5% | 78.9% (15/19) |
Vostok | 6020–380 | Centennial | 187.6 | 188 | 0.2% | 72.4% (21/29) |
Vostok (Figure 10b) | 21,969–397 | Centennial and millennial | 432.1 | 219 | 49.3% | 69.4% (34/49) |
Vostok (Figure 12b) | 71,315–63,395 | Centennial and millennial | 274.4 | 212 | 22.7% | 87.5% (21/24) |
EDC (Figure 1) | 4083–443 | Centennial and millennial | 162.0 | 173.9 | −6.8% | 52.4% (11/21) |
EDC (Figure 2b) | 70,400–63,700 | Centennial and millennial | 541.0 | 212.0 | 60.8% | 75.0% (9/12) |
EPICA Dome B | 4005–360 | Centennial | 137.8 | 186 | −25.9% | 20.0% (5/20) |
Taylor Dome (Figure 3a) | 4000–360 | Centennial | 205.8 | 186 | 9.6% | 50.0% (9/18) |
Averages | NA | NA | NA | NA | 7.6–14.8% | 59.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, W.J.; Davis, W.B. Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations. Climate 2020, 8, 130. https://doi.org/10.3390/cli8110130
Davis WJ, Davis WB. Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations. Climate. 2020; 8(11):130. https://doi.org/10.3390/cli8110130
Chicago/Turabian StyleDavis, W. Jackson, and W. Barton Davis. 2020. "Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations" Climate 8, no. 11: 130. https://doi.org/10.3390/cli8110130
APA StyleDavis, W. J., & Davis, W. B. (2020). Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations. Climate, 8(11), 130. https://doi.org/10.3390/cli8110130