Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Dansgaard–Oeschger Oscillations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1830 KiB  
Article
Centennial-Scale Climatic Oscillations during the Dansgaard–Oeschger 14 Revealed by Stalagmite Isotopic Records from Shouyuangong Cave, Southern China
by Shushuang Liu, Zhenqiu Zhang, Xiumin Zhai, Jianshun Chen, Yuanhai Zhang, Ping Long and Zhiqiang Chen
Geosciences 2022, 12(11), 400; https://doi.org/10.3390/geosciences12110400 - 27 Oct 2022
Cited by 1 | Viewed by 2570
Abstract
During the last glacial, Dansgaard–Oeschger (DO) events are mostly characterized by moderate and shorter fluctuations. Here, we present the three-year-resolution stalagmite isotopic record from Shouyuangong Cave (SYG), southern China, revealing a detailed history of Asian summer monsoon (ASM) and local environmental changes during [...] Read more.
During the last glacial, Dansgaard–Oeschger (DO) events are mostly characterized by moderate and shorter fluctuations. Here, we present the three-year-resolution stalagmite isotopic record from Shouyuangong Cave (SYG), southern China, revealing a detailed history of Asian summer monsoon (ASM) and local environmental changes during the middle and late period of DO 14. During this period, the SYG1 δ18O is characterized by the persistence of centennial-scale oscillations. These centennial δ18O enrichment excursions are clearly mirrored in the δ13C signal. This correlation suggests that changes in soil CO2 production at this site are closely correlated with centennial-scale ASM variability. Furthermore, power spectrum analysis shows that δ18O and δ13C display the common periodicities consistent with solar activity cycles, implicating a control of solar activity on the ASM and soil humidity. Particularly, weak solar activity generally corresponds to weak ASM and a decline in soil CO2 production. One possible link between them is that external forcing controls the ASM intensity via the thermal contrast between the ocean and land. Subsequently, the balance of soil moisture co-varies with the hydrological responses. Finally, the soil CO2 production is further amplified by ecological effect. Full article
(This article belongs to the Special Issue Climate Variations at Millennial Timescales)
Show Figures

Figure 1

40 pages, 10275 KiB  
Article
Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations
by W. Jackson Davis and W. Barton Davis
Climate 2020, 8(11), 130; https://doi.org/10.3390/cli8110130 - 10 Nov 2020
Cited by 3 | Viewed by 5513
Abstract
We report a natural wind cycle, the Antarctic Centennial Wind Oscillation (ACWO), whose properties explain milestones of climate and human civilization, including contemporary global warming. We explored the wind/temperature relationship in Antarctica over the past 226 millennia using dust flux in ice cores [...] Read more.
We report a natural wind cycle, the Antarctic Centennial Wind Oscillation (ACWO), whose properties explain milestones of climate and human civilization, including contemporary global warming. We explored the wind/temperature relationship in Antarctica over the past 226 millennia using dust flux in ice cores from the European Project for Ice Coring in Antarctica (EPICA) Dome C (EDC) drill site as a wind proxy and stable isotopes of hydrogen and oxygen in ice cores from EDC and ten additional Antarctic drill sites as temperature proxies. The ACWO wind cycle is coupled 1:1 with the temperature cycle of the Antarctic Centennial Oscillation (ACO), the paleoclimate precursor of the contemporary Antarctic Oscillation (AAO), at all eleven drill sites over all time periods evaluated. Such tight coupling suggests that ACWO wind cycles force ACO/AAO temperature cycles. The ACWO is modulated in phase with the millennial-scale Antarctic Isotope Maximum (AIM) temperature cycle. Each AIM cycle encompasses several ACWOs that increase in frequency and amplitude to a Wind Terminus, the last and largest ACWO of every AIM cycle. This historic wind pattern, and the heat and gas exchange it forces with the Southern Ocean (SO), explains climate milestones including the Medieval Warm Period and the Little Ice Age. Contemporary global warming is explained by venting of heat and carbon dioxide from the SO forced by the maximal winds of the current positive phase of the ACO/AAO cycle. The largest 20 human civilizations of the past four millennia collapsed during or near the Little Ice Age or its earlier recurrent homologs. The Eddy Cycle of sunspot activity oscillates in phase with the AIM temperature cycle and therefore may force the internal climate cycles documented here. Climate forecasts based on the historic ACWO wind pattern project imminent global cooling and in ~4 centuries a recurrent homolog of the Little Ice Age. Our study provides a theoretically-unified explanation of contemporary global warming and other climate milestones based on natural climate cycles driven by the Sun, confirms a dominant role for climate in shaping human history, invites reconsideration of climate policy, and offers a method to project future climate. Full article
Show Figures

Figure 1

30 pages, 8219 KiB  
Article
The Antarctic Centennial Oscillation: A Natural Paleoclimate Cycle in the Southern Hemisphere That Influences Global Temperature
by W. Jackson Davis, Peter J. Taylor and W. Barton Davis
Climate 2018, 6(1), 3; https://doi.org/10.3390/cli6010003 - 8 Jan 2018
Cited by 8 | Viewed by 20565
Abstract
We report a previously-unexplored natural temperature cycle recorded in ice cores from Antarctica—the Antarctic Centennial Oscillation (ACO)—that has oscillated for at least the last 226 millennia. Here we document the properties of the ACO and provide an initial assessment of its role in [...] Read more.
We report a previously-unexplored natural temperature cycle recorded in ice cores from Antarctica—the Antarctic Centennial Oscillation (ACO)—that has oscillated for at least the last 226 millennia. Here we document the properties of the ACO and provide an initial assessment of its role in global climate. We analyzed open-source databases of stable isotopes of oxygen and hydrogen as proxies for paleo-temperatures. We find that centennial-scale spectral peaks from temperature-proxy records at Vostok over the last 10,000 years occur at the same frequencies (±2.4%) in three other paleoclimate records from drill sites distributed widely across the East Antarctic Plateau (EAP), and >98% of individual ACOs evaluated at Vostok match 1:1 with homologous cycles at the other three EAP drill sites and conversely. Identified ACOs summate with millennial periodicity to form the Antarctic Isotope Maxima (AIMs) known to precede Dansgaard-Oeschger (D-O) oscillations recorded in Greenland ice cores. Homologous ACOs recorded at the four EAP drill sites during the last glacial maximum appeared first at lower elevations nearest the ocean and centuries later on the high EAP, with latencies that exceed dating uncertainty >30-fold. ACO homologs at different drill sites became synchronous, however, during the warmer Holocene. Comparative spectral analysis suggests that the millennial-scale AIM cycle declined in period from 1500 to 800 years over the last 70 millennia. Similarly, over the last 226 millennia ACO repetition period (mean 352 years) declined by half while amplitude (mean 0.67 °C) approximately doubled. The period and amplitude of ACOs oscillate in phase with glacial cycles and related surface insolation associated with planetary orbital forces. We conclude that the ACO: encompasses at least the EAP; is the proximate source of D-O oscillations in the Northern Hemisphere; therefore affects global temperature; propagates with increased velocity as temperature increases; doubled in intensity over geologic time; is modulated by global temperature variations associated with planetary orbital cycles; and is the probable paleoclimate precursor of the contemporary Antarctic Oscillation (AAO). Properties of the ACO/AAO are capable of explaining the current global warming signal. Full article
Show Figures

Graphical abstract

Back to TopTop