Soil Carbon Sequestration Potential of Climate-Smart Villages in East African Countries
Abstract
:1. Introduction
2. Methods
2.1. The Study Sites
2.2. Soil Sampling and Preparation
2.3. Soil Analysis
2.4. Statistical Analyses
3. Results and Discussion
3.1. Cropland
3.2. Grassland
3.3. Agroforestry
3.4. Forest Land
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nat. Cell Biol. 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Recha, J.; Kimeli, P.; Atakos, V.; Radeny, M.; Mungai, C. Stories of Success: Climate-Smart Villages in East Africa; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2017; Available online: https://hdl.handle.net/10568/81030 (accessed on 6 October 2020).
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef] [Green Version]
- FAO; OECD. Food Security and Nutrition: Challenges for Agriculture and the Hidden Potential of Soil; A Report to the G20 Agriculture Deputies; FAO: Rome, Italy, 2018. [Google Scholar]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Cloy, J.; Smith, K. Greenhouse Gas Sources and Sinks. Encycl. Anthr. 2018, 2, 391–400. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nat. Cell Biol. 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nat. Cell Biol. 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Sweeney, S.; Shangguan, Z.-P. Long-Term Effects of Natural Enclosure: Carbon Stocks, Sequestration Rates and Potential for Grassland Ecosystems in the Loess Plateau. CLEAN Soil Air Water 2013, 42, 617–625. [Google Scholar] [CrossRef]
- Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 2020, 108, 104–111. [Google Scholar] [CrossRef]
- Winowiecki, L.A.; Vågen, T.-G.; Massawe, B.; Jelinski, N.A.; Lyamchai, C.; Sayula, G.; Msoka, E. Landscape-scale variability of soil health indicators: Effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 2015, 105, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Doggart, N.; Morgan-Brown, T.; Lyimo, E.; Mbilinyi, B.; Meshack, C.K.; Sallu, S.M.; Spracklen, D.V. Agriculture is the main driver of deforestation in Tanzania. Environ. Res. Lett. 2020, 15, 034028. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Transition from Forest-based to Cereal-based Agricultural Systems: A Review of the Drivers of Land use Change and Degradation in Southwest Ethiopia. Land Degrad. Dev. 2016, 28, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.P.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Faurès, J.; Bartley, D.; Bazza, M.; Burke, J.; Hoogeveen, J.; Soto, D.; Steduto, P. Climate Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013; p. 557. Available online: http://www.fao.org/3/a-i3325e.pdf (accessed on 6 October 2020).
- Ran, L.; Lu, X.; Fang, N.; Yang, X. Effective soil erosion control represents a significant net carbon sequestration. Sci. Rep. 2018, 8, 12018. [Google Scholar] [CrossRef]
- Land, M.; Haddaway, N.R.; Hedlund, K.; Jørgensen, H.B.; Kätterer, T.; Isberg, P.-E. How do selected crop rotations affect soil organic carbon in boreo-temperate systems? A systematic review protocol. Environ. Evid. 2017, 6, 708. [Google Scholar] [CrossRef]
- Feyisa, K.; Beyene, S.; Angassa, A.; Said, M.Y.; De Leeuw, J.; Abebe, A.; Megersa, B. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. Catena 2017, 159, 9–19. [Google Scholar] [CrossRef]
- Powlson, D.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Sanderman, J.; Reseigh, J.; Wurst, M.; Young, M.-A.; Austin, J. Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia. PLoS ONE 2015, 10, e0136157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, P.; Jarvis, A.; Campbell, B.; Zougmoré, R.B.; Khatri-Chhetri, A.; Vermeulen, S.J.; Loboguerrero, A.M.; Sebastian, L.S.; Kinyangi, J.; Bonilla-Findji, O.; et al. The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Ogada, M.; Rao, E.J.; Radeny, M.; Recha, J.; Solomon, D. Climate-smart agriculture, household income and asset accumulation among smallholder farmers in the Nyando basin of Kenya. World Dev. Perspect. 2020, 18, 100203. [Google Scholar] [CrossRef]
- Massawe, H.J.B. Landform and Soil Analysis for Predicting Distribution of Plague Reservoirs and Vectors in Mavumo Area, Lushoto District, Tanzania. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2011. Available online: https://www.semanticscholar.org/paper/Landform-and-soil-analysis-for-predicting-of-plague-Massawe/ea6bfde77b3e215938bd710448d4372078da43ec (accessed on 1 September 2020).
- Ndakidemi, P.; Semoka, J. Soil Fertility Survey in Western Usambara Mountains, Northern Tanzania. Pedosphere 2006, 16, 237–244. [Google Scholar] [CrossRef]
- Gathenya, M.; Mwangi, H.; Coe, R.; Sang, J.K. Climate- and Land Use-Induces Risks To Watershed Services in the Nyando River Basin, Kenya. Exp. Agric. 2011, 47, 339–356. [Google Scholar] [CrossRef]
- Sijmons, K.; Kiplimo, J.; Förch, W.; Thornton, P.K.; Radeny, M.; Kinyangi, J. CCAFS Site Atlas–Nyando/Katuk Odeyo; CCAFS Site Atlas Series; The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013; Available online: www.ccafs.cgiar.org (accessed on 1 September 2020).
- FAO. World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Available online: http://www.fao.org/3/a-a0510e.pdf (accessed on 1 September 2020).
- Sijmons, K.; Kiplimo, J.; Förch, W.; Thornton, P.K.; Radeny, M.; Kinyangi, J. CCAFS Site Atlas–Albertine Rift/Hoima; CCAFS Site Atlas Series; The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013; Available online: www.ccafs.cgiar.org (accessed on 1 September 2020).
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 3rd ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 1992; Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q) (accessed on 6 October 2020).
- Hendershot, W.; Lalande, H.; Duquette, M. Soil Reaction and Exchangeable Acidity. In Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA. [CrossRef]
- Hu, C.; Xia, X.; Chen, Y.; Han, X. Soil carbon and nitrogen sequestration and crop growth as influenced by long-term application of effective microorganism compost. Chil. J. Agric. Res. 2018, 78, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef] [Green Version]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.D.; Graetz, D. Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience. Agrofor. Syst. 2004, 61, 269–279. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 1–12. [Google Scholar] [CrossRef]
- Cardinael, R.; Mao, Z.; Prieto, I.; Stokes, A.; Dupraz, C.; Kim, J.H.; Jourdan, C. Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 2015, 391, 219–235. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Prieto, I.; Roumet, C.; Nespoulous, J.; Metayer, J.; Huon, S.; Villatoro, M.; Stokes, A. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: Effect of plant roots and soil characteristics. Plant Soil 2017, 424, 303–317. [Google Scholar] [CrossRef]
- Upson, M.A.; Burgess, P.J. Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil 2013, 373, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Béliveau, A.; Lucotte, M.; Davidson, R.; Paquet, S.; Mertens, F.; Passos, C.J.; Romana, C.A. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon. J. Environ. Manag. 2017, 203, 522–532. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2017, 92, 285–299. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Preston, C.M.; Nierop, K. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 2007, 142, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kempen, B.; Dalsgaard, S.; Kaaya, A.K.; Chamuya, N.; Ruipérez-González, M.; Pekkarinen, A.; Walsh, M.G. Mapping topsoil organic carbon concentrations and stocks for Tanzania. Geoderma 2019, 337, 164–180. [Google Scholar] [CrossRef]
- Torres-Sallan, G.; Creamer, R.; Lanigan, G.J.; Reidy, B.; Byrne, K.A. Effects of soil type and depth on carbon distribution within soil macroaggregates from temperate grassland systems. Geoderma 2018, 313, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.E.; Smart, S.M.; Quirk, H.; Tallowin, J.R.B.; Mortimer, S.R.; Shiel, R.S.; Wilby, A.; Bardgett, R.D. Legacy effects of grassland management on soil carbon to depth. Glob. Chang. Biol. 2016, 22, 2929–2938. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambaw, G.; Recha, J.W.; Nigussie, A.; Solomon, D.; Radeny, M. Soil Carbon Sequestration Potential of Climate-Smart Villages in East African Countries. Climate 2020, 8, 124. https://doi.org/10.3390/cli8110124
Ambaw G, Recha JW, Nigussie A, Solomon D, Radeny M. Soil Carbon Sequestration Potential of Climate-Smart Villages in East African Countries. Climate. 2020; 8(11):124. https://doi.org/10.3390/cli8110124
Chicago/Turabian StyleAmbaw, Gebermedihin, John W. Recha, Abebe Nigussie, Dawit Solomon, and Maren Radeny. 2020. "Soil Carbon Sequestration Potential of Climate-Smart Villages in East African Countries" Climate 8, no. 11: 124. https://doi.org/10.3390/cli8110124
APA StyleAmbaw, G., Recha, J. W., Nigussie, A., Solomon, D., & Radeny, M. (2020). Soil Carbon Sequestration Potential of Climate-Smart Villages in East African Countries. Climate, 8(11), 124. https://doi.org/10.3390/cli8110124