Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data, Quality Control, and Validation
2.3. Climate Parameters Analysis
2.3.1. Standardized Anomaly Index
2.3.2. Extreme Climate Indices
2.3.3. Trend Analysis of Rainfall and Temperature Indices
3. Results
3.1. Rainfall Analysis for the Vea Catchment
3.1.1. Station and Gridded Precipitation Data Comparison
3.1.2. Standardized Anomaly Index of Annual Rainfall
3.1.3. Spatio-Temporal Trend Analysis of Rainfall Extremes
3.2. Temperature Extreme Indices Trend Analysis
4. Discussion
5. Conclusions and Recommendation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. 2006, 111, D14102. [Google Scholar] [CrossRef]
- IPCC Mitigation of Climate Change. The Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Amuzu, J.; Jallow, B.P.; Kabo-Bah, A.T.; Yaffa, S. The Climate Change Vulnerability and Risk Management Matrix for the Coastal Zone of the Gambia. Hydrology 2018, 5, 14. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Zwiers, F.W.; Braconnot, P.; Gillett, N.P.; Luo, Y.; Orsini, J.A.M.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and Attributing Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 663–746. [Google Scholar]
- Pall, P.; Aina, T.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Hilberts, A.G.; Lohmann, D.; Allen, M.R. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 2011, 470, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2012; Available online: http://www.preventionweb.net/files/24327_srexallfinal.pdf (accessed on 20 May 2017).
- Jones, P.D.; Trenberth, K.E.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein, T.; Parker, D.; Renwick, J.; Rusticucci, M.; Soden, B. Observations: Surface and atmospheric climate change. Clim. Chang. 2007, 235–336. [Google Scholar]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: New York, NY, USA, 2007; Volume 4. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Moberg, A.; Jones, P.D. Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int. J. Climatol. 2005, 25, 1149–1171. [Google Scholar] [CrossRef]
- Sarr, B. Present and future climate change in the semi-arid region of West Africa: A crucial input for practical adaptation in agriculture. Atmos. Sci. Lett. 2012, 13, 108–112. [Google Scholar] [CrossRef]
- FAO; IFAD; WFP. The State of Food Insecurity in the World 2013. The Multiple Dimensions of Food Security; FAO: Rome, Italy, 2013; ISBN 978-92-5-107916-4. [Google Scholar]
- Amuzu, J.; Kabo-Bah, A.T.; Jallow, B.P.; Yaffa, S. Households’ Livelihood Vulnerability to Climate Change and Climate Variability: A Case Study of the Coastal Zone, the Gambia. J. Environ. Earth Sci. 2018, 8, 35–46. [Google Scholar] [CrossRef]
- Bohle, H.G.; Downing, T.E.; Watts, M.J. Climate change and social vulnerability: Toward a sociology and geography of food insecurity. Glob. Environ. Chang. 1994, 4, 37–48. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Jones, P.D.; Horton, E.B.; Folland, C.K.; Hulme, M.; Parker, D.E.; Basnett, T.A. The use of indices to identify changes in climatic extremes. Clim. Chang. 1999, 42, 131–149. [Google Scholar] [CrossRef]
- Data, C. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Yazid, M.; Ismail, N.A.; Yazid, M.; Yunos, M.; Ismail, S. Malaysia Going Greens: A Study on Community Commitment towards a Greener Urban Living Environment. Adv. Environ. Biol. 2015, 9, 498–503. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: A tale of international collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Limantol, A.M.; Keith, B.E.; Azabre, B.A.; Lennartz, B. Farmers’ perception and adaptation practice to climate variability and change: A case study of the Vea catchment in Ghana. SpringerPlus 2016, 5, 830. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 2; Integrated Drought Management Programme: Geneva, Switzerland, 2016. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Peterson, T.C.; Taylor, M.A.; Demeritte, R.; Duncombe, D.L.; Burton, S.; Thompson, F.; Porter, A.; Mercedes, M.; Villegas, E.; Semexant Fils, R.; et al. Recent changes in climate extremes in the Caribbean region. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Mouhamed, L.; Traore, S.B.; Alhassane, A.; Sarr, B. Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extrem. 2013, 1, 19–25. [Google Scholar] [CrossRef]
- Soro, G.E.; Noufé, D.; Goula Bi, T.A.; Shorohou, B. Trend analysis for extreme rainfall at sub-daily and daily timescales in Côte d’Ivoire. Climate 2016, 4, 37. [Google Scholar] [CrossRef]
- M’Po, Y.N.; Lawin, E.A.; Yao, B.K.; Oyerinde, G.T.; Attogouinon, A.; Afouda, A.A. Decreasing Past and Mid-Century Rainfall Indices over the Ouémé River Basin, Benin (West Africa). Climate 2017, 5, 74. [Google Scholar] [CrossRef]
- Yiran, G.A.B.; Stringer, L.C. Spatio-temporal analyses of impacts of multiple climatic hazards in a savannah ecosystem of Ghana. Clim. Risk Manag. 2016, 14, 11–26. [Google Scholar] [CrossRef]
- Okafor, G.C.; Jimoh, O.D.; Larbi, K.I. Detecting Changes in Hydro-Climatic Variables during the Last Four Decades (1975–2014) on Downstream Kaduna River Catchment, Nigeria. Atmos. Clim. Sci. 2017, 7, 161–175. [Google Scholar] [CrossRef]
- Önöz, B.; Bayazit, M. The power of statistical tests for trend detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol. 2013, 34, 1262–1277. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.T.; Matos, J.; Boillat, J.L.; Schleiss, A. Comparison and Evaluation of Satellite Derived Precipitation Products for Hydrological Modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012, 16, 489–500. [Google Scholar] [CrossRef]
- Moctar, D.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 17, 3995–4014. [Google Scholar] [CrossRef]
- The World Bank Group. Disaster Risk Management Programmes for Priority Countries. Global Facility for Disaster Reduction and Recovery (GFDRR); The World Bank: Washington, DC, USA; International Strategy for Disaster Reduction (ISDR): Geneva, Switzerland, 2009. [Google Scholar]
- UNDP (United Nations Development Programme). Recovery Support for Northern Ghana; UNDP: Accra, Ghana, 2009. [Google Scholar]
- NADMO (National Disaster Management Organization). A PowerPoint Presentation by NADMO. Bolgatanga. Available online: http://mofafoodsecurity.files.wordpress.com/2011/06/presentation-by-nadmo-20111.ppt (accessed on 3 September 2018).
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
ID | Data Type (Name) | Variables |
---|---|---|
1 | Gridded (GRID 1) | Rainfall |
2 | Gridded (GRID 2) | Rainfall |
3 | Station (Vea) | rainfall and temperature |
4 | Gridded (GRID 3) | Rainfall |
5 | Station (Bolgatanga) | rainfall and temperature |
6 | Gridded (GRID 4) | Rainfall |
7 | Gridded (GRID 5) | Rainfall |
8 | Gridded (GRID 6) | Rainfall |
9 | Gridded (GRID 7) | Rainfall |
10 | Gridded (GRID 8) | Rainfall |
11 | Gridded (GRID 9) | Rainfall |
12 | Gridded (GRID 10) | Rainfall |
13 | Gridded (GRID 11) | Rainfall |
14 | Gridded (GRID 12) | Rainfall |
Classification | Values |
---|---|
Extremely wet | 2.00 and more |
Very wet | 1.50 to 1.99 |
Moderately wet | 1.00 to 1.49 |
Normal | −0.99 to 0.99 |
Moderately dry | −1.00 to −1.49 |
Very dry | −1.50 to −1.99 |
Extremely dry | −2.00 and less |
(A) Precipitation Indices | |||
Indices | Descriptive Name | Definition | Units |
PRCPTOT | Annual total wet-day precipitation | Annual total rainfall from days ≥ 1 mm | mm |
R95p | Very wet days | Annual total precipitation from the days with daily rainfall > 95th percentile | mm |
R99p | Extremely wet days | Annual total precipitation on the days when daily rainfall > 99th percentile | mm |
R20mm | Number of very heavy precipitation days | Annual counts of days when rainfall ≥ 20 mm | days |
R10mm | Number of heavy precipitation days | Annual counts of days when rainfall ≥ 10 mm | days |
RX1day | Max 1-day precipitation amount | Annual maximum 1-day precipitation | mm |
RX5day | Max-5-day precipitation amount | Annual maximum consecutive 5-day rainfall | mm |
CWD | Consecutive wet days | Maximum number of consecutive days with rainfall ≥ 1 mm | days |
CDD | Consecutive dry days | Maximum number of consecutive days with rainfall < 1 mm | days |
SDII | Simple daily intensity index | Annual total rainfall when (PRCP ≥ 1 mm) divided by the number of wet days | mm/day |
(B) Temperature Indices | |||
Indices | Descriptive Name | Definition | Units |
TX90p | Warm days | Percentage of days when Tmax > 90th percentile | Days |
TN90p | Warm nights | Percentage of days when Tmin > 90th percentile | Days |
TX10p | Cool days | Percentage of days when Tmax < 10th percentile | Days |
TN10p | Cool night | Percentage of days when Tmin < 10th percentile | Days |
TXx | Warmest day | Annual maximum value of the daily max temperature | °C |
TNx | Warmest night | Annual maximum value of daily min temperature | °C |
WSD1 | Warm spell duration | Annual count of days with at least 6 consecutive days with Tmax > 90th percentile | Days |
Monthly Scale | Vea | Bolgatanga |
---|---|---|
Percentage bias (PBIAS) | 4.4% | −8.1% |
Pearson correlation coefficient (r) | 0.99 | 0.99 |
Root-mean-square error (RMSE) Nash-Sutcliffe efficiency | 6.6 0.98 | 3.9 0.99 |
Annual Scale | ||
Percentage bias (PBIAS) | 6.7% | −1.1% |
Pearson correlation coefficient (r) | 0.50 | 0.70 |
Mean annual rainfall (mm) | 921.8 (974.9) | 991.4 (974.8) |
Standard deviation | 123.3 (117.8) | 132.9 (118.1) |
Rainfall Location | Frequency of Drier than Normal | Frequency of Wetter than Normal | % of Dry Period | % of Wet Period |
---|---|---|---|---|
GRID 1 | 4 | 5 | 44.4 | 55.6 |
GRID 2 | 5 | 5 | 50.0 | 50.0 |
VEA | 4 | 4 | 50.0 | 50.0 |
GRID 3 | 6 | 6 | 50.0 | 50.0 |
GRID 4 | 5 | 6 | 45.5 | 54.5 |
GRID 5 | 6 | 4 | 60.0 | 40.0 |
GRID 6 | 6 | 5 | 54.5 | 45.5 |
GRID 7 | 6 | 6 | 50.0 | 50.0 |
GRID 8 | 3 | 6 | 33.3 | 66.7 |
GRID 9 | 5 | 6 | 45.5 | 54.5 |
GRID 10 | 6 | 5 | 54.5 | 45.5 |
GRID 11 | 5 | 6 | 45.5 | 54.5 |
GRID 12 | 5 | 6 | 45.5 | 54.5 |
BOLGATANGA | 4 | 7 | 36.4 | 63.6 |
CATCHMENT | 5 | 6 | 45.5 | 54.5 |
Indices | Vea | Bolgatanga | GRID 1 | GRID 2 | GRID 3 | GRID 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | Slope | Z | Slope | Z | Slope | Z | Slope | Z | Slope | Z | Slope | |
PRCPTOT | −1.18 | −2.81 | −0.57 | −1.46 | 0.03 | 0.08 | −0.10 | −0.13 | −0.11 | −0.38 | 0.32 | 0.68 |
R95p | −2.48 * | −3.71 | −0.24 | −0.25 | 0.02 | 0.07 | −0.39 | −0.74 | −1.15 | −1.46 | −0.78 | −1.65 |
R99p | −1.13 | 0.00 | 0.15 | 0.00 | −0.07 | 0.00 | −0.56 | 0.00 | −1.43 | 0.00 | −1.05 | 0.00 |
R10mm | −0.47 | −0.20 | 1.04 | 0.11 | −0.24 | 0.00 | −0.18 | 0.00 | 1.06 | 0.12 | 0.39 | 0.00 |
R20mm | −1.62 | −0.10 | 0.26 | 0.00 | −0.20 | 0.00 | −0.41 | 0.00 | 0.62 | 0.00 | 0.84 | 0.04 |
RX1day | −2.51 | −0.77 | −0.23 | −0.06 | 0.57 | 0.09 | −0.52 | −0.18 | −0.96 | −0.19 | −0.86 | −0.19 |
RX5day | −1.43 | −0.75 | 0.39 | 0.11 | 0.21 | 0.07 | −0.10 | −0.06 | −0.32 | −0.16 | −1.07 | −0.34 |
CDD | −1.18 | −1.53 | 1.48 | 1.09 | 0.94 | 0.57 | 0.73 | 0.50 | 0.19 | 0.69 | 0.37 | 0.35 |
CWD | 0.87 | 0.00 | −1.33 | −0.04 | −0.85 | 0.00 | 0.10 | 0.00 | −0.24 | 0.00 | 0.62 | 0.00 |
SDII | −2.87 * | −0.13 | 0.47 | 0.03 | 0.19 | 0.03 | −1.56 | −0.02 | 0.78 | 0.54 | −0.47 | −0.01 |
Indices | GRID 5 | GRID 6 | GRID 7 | GRID 8 | GRID 9 | GRID 10 | ||||||
Z | Slope | Z | Slope | Z | Slope | Z | Slope | Z | Slope | Z | Slope | |
PRCPTOT | −0.36 | −0.88 | −0.21 | −0.38 | −0.44 | −1.10 | 0.00 | 0.04 | −0.08 | −0.39 | −0.45 | −1.34 |
R95p | −0.39 | −0.65 | −0.66 | −1.37 | −0.97 | −1.60 | −1.77 | −2.23 | −0.94 | −0.23 | −1.30 | −2.37 |
R99p | −0.94 | 0.00 | −1.46 | −0.15 | −2.04 * | −1.59 | −0.46 | 0.00 | −0.54 | −0.22 | 0.00 | 0.00 |
R10mm | 0.52 | 0.04 | −0.08 | 0.00 | 0.57 | 0.04 | 0.59 | 0.07 | 0.00 | 0.00 | 0.55 | 0.05 |
R20mm | 0.53 | 0.00 | 0.10 | 0.00 | −0.18 | 0.00 | 0.65 | 0.03 | 1.41 | 0.14 | −0.23 | 0.00 |
RX1day | −0.84 | −0.20 | −0.83 | −0.09 | −1.80 | −0.39 | −0.36 | −0.10 | 0.38 | 0.00 | −0.37 | −0.09 |
RX5day | −0.31 | −0.17 | −0.16 | −0.05 | −0.78 | −0.26 | −0.31 | −0.16 | 1.96 * | 0.94 | 0.06 | 0.05 |
CDD | 0.62 | 0.35 | 0.41 | 0.33 | 1.20 | 0.71 | 1.48 | 0.92 | −1.63 | −0.04 | 2.08 | 1.26 |
CWD | −1.27 | 0.00 | −0.78 | 0.00 | −1.35 | 0.00 | −1.48 | −0.04 | −1.15 | −1.65 | −1.48 | −0.05 |
SDII | −0.29 | 0.00 | 0.00 | 0.00 | −0.50 | −0.01 | 0.15 | 0.00 | −0.71 | 0.00 | −0.59 | −0.01 |
Indices | GRID 11 | GRID 12 | Catchment | |||||||||
Z | Slope | Z | Slope | Z | Slope | |||||||
PRCPTOT | −0.79 | −2.07 | −0.79 | −2.07 | −0.31 | −0.66 | ||||||
R95p | −1.93 | −3.59 | −1.93 | −3.59 | −0.08 | −0.22 | ||||||
R99p | −1.21 | 0.00 | −1.21 | 0.00 | −1.55 | −0.60 | ||||||
R10mm | 0.91 | 0.13 | 0.91 | 0.13 | 0.99 | 0.14 | ||||||
R20mm | 0.35 | 0.00 | 0.35 | 0.00 | 0.39 | 0.00 | ||||||
RX1day | −0.52 | −0.19 | −0.52 | −0.19 | −1.12 | −0.23 | ||||||
RX5day | −0.29 | −0.14 | −0.29 | −0.14 | −0.92 | −0.37 | ||||||
CDD | 1.17 | 0.61 | 1.17 | 0.61 | 0.29 | 0.18 | ||||||
CWD | −1.66 | −0.06 | −1.66 | −0.06 | −0.18 | 0.00 | ||||||
SDII | −0.85 | −0.02 | −0.85 | −0.02 | −0.26 | 0.00 |
Indices | Vea | Bolgatanga | ||
---|---|---|---|---|
Z | Slope | Z | Slope | |
TX90p | 1.99 * | 0.37 | 0.19 | 0.01 |
TN90p | 0.51 | 0.11 | 1.56 | 0.56 |
TX10p | 0.12 | 0.01 | 1.07 | 0.17 |
TN10p | 0.94 | 0.11 | −0.15 | −0.02 |
TXx | 0.46 | 0.01 | −0.28 | −0.01 |
TNx | 0.07 | 0.04 | 1.15 | 0.03 |
WSD1 | 0.90 | 0.00 | 1.27 | 0.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larbi, I.; Hountondji, F.C.C.; Annor, T.; Agyare, W.A.; Mwangi Gathenya, J.; Amuzu, J. Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate 2018, 6, 87. https://doi.org/10.3390/cli6040087
Larbi I, Hountondji FCC, Annor T, Agyare WA, Mwangi Gathenya J, Amuzu J. Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate. 2018; 6(4):87. https://doi.org/10.3390/cli6040087
Chicago/Turabian StyleLarbi, Isaac, Fabien C. C. Hountondji, Thompson Annor, Wilson Agyei Agyare, John Mwangi Gathenya, and Joshua Amuzu. 2018. "Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana" Climate 6, no. 4: 87. https://doi.org/10.3390/cli6040087
APA StyleLarbi, I., Hountondji, F. C. C., Annor, T., Agyare, W. A., Mwangi Gathenya, J., & Amuzu, J. (2018). Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate, 6(4), 87. https://doi.org/10.3390/cli6040087