Understanding the Recent Global Surface Warming Slowdown: A Review
Abstract
1. Introduction
1.1. Was There a Hiatus, or a Slowdown?
1.2. How Long Has the Slowdown Lasted?
2. Looking for Clues at the Surface
2.1. Contributions to the Global-Mean Surface Temperature Variation
2.2. Trade-Wind Intensification in the Tropical Pacific
2.3. The Arctic
3. The Energy Budget
3.1. The Global Budget
3.2. Partition Among Different Ocean Basins
4. Proposed Mechanisms
5. Model “Nudging” Results and Their Interpretations
6. IPO as an Interdecadal Modulation of ENSO
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I 2013; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.-M. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015, 348, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.-P.; Nieves, V.; Tung, K.-K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earths Future 2016, 4, 472–482. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. 2018. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 1 October 2018).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.K. Global mean surface temperature variability—Space-time perspective from rotated EOFs. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Zhang, R. On the persistence and coherence of subpolar sea surface temeprature and salinity anomalies associated with the Atlantic multidecadal variability. Geophy. Res. Lett. 2017, 44, 7865–7875. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T.L.; Held, I.M. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophy. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zhang, R. Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Delworth, T.L.; Mann, M.E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 2000, 16, 661–676. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.K. Global surface warming enhanced by weak Atlantic Overturning Circulation. Nature 2018, 559, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.H. Climate Change 2007, Working Group I: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Brohan, P.; Kennedy, J.J.; Harris, I.; Trett, S.F.B.; Jones, P.D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–1993. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Chen, X.; Wallace, J.M. ENSO-like variability 1900–2013. J. Clim. 2015, 28, 9623–9641. [Google Scholar] [CrossRef]
- Drijfhout, S.; van Oldenborgh, G.J.; Cimatoribus, A. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns. J. Clim. 2012, 25, 8373–8379. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–14. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoliak, B.; Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 2011, 37, 759–773. [Google Scholar] [CrossRef]
- Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures. Nature 1986, 320, 602–606. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Schlesinger, B.M.; Ramankutty, N.; Andronova, N. Temperature oscillations in the North Atlantic. Science 2000, 28, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Delworth, T.L. Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation. J. Clim. 2005, 18, 1853–1860. [Google Scholar] [CrossRef]
- Clement, A.; DiNezio, P.; Deser, C. Rethinking the ocean’s role in the Southern Oscillation. J. Clim. 2011, 24, 4056–4072. [Google Scholar] [CrossRef]
- Newman, M.; Compo, G.P.; Alexander, M.A. ENSO-forced variability of the Pacific decadal oscillation. J. Clim. 2003, 16, 3853–3857. [Google Scholar] [CrossRef]
- Booth, B.B.B.; Dunstone, N.J.; Halloran, P.R.; Andrews, T.; Bellouin, N. Aerosols implicated as a prime dirver of twentieth-century North Atlantic climate variability. Nature 2012, 484, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Delworth, T.L.; Sutton, R.; Hodson, D.L.; Dixon, K.W.; Held, I.M.; Kushnir, Y.; Marshalln, J.; Ming, Y.; Msadek, R.; et al. Have aerosols caused the observed Atlantic Multidecadal Variability? J. Atmos. Sci. 2013, 70, 1135–1144. [Google Scholar] [CrossRef]
- Gray, S.T.; Graumlich, L.J.; Betancourt, J.L.; Pederson, G. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.K.; Frankcombe, L.; Dijkstra, H.A.; Lesins, G.; Dubey, M.K. Greenland ice-core evidence for spatial and temporay variability of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Chylek, P.; Folland, C.K.; Lesins, G.; Dubey, M.K. Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Tung, K.K.; Zhou, J. Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA 2013, 110, 2058–2063. [Google Scholar] [CrossRef] [PubMed]
- DelSole, T.; Tippett, M.K.; Shukla, J. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Clim. 2011, 24, 909–926. [Google Scholar] [CrossRef]
- Wei, W.; Lohmann, G. Simulated Atlantic Multidecadal Oscillation during the Holocene. J. Clim. 2012. [Google Scholar] [CrossRef]
- Yang, X.; Rosati, A.; Zhang, S.; Delworth, T.L.; Gudgel, R.G.; Zhang, R.; Vecchi, G.; Anderson, W.; Chang, Y.S.; DelSole, T.; et al. A Predictable AMO-Like Pattern in the GFDL Fully Coupled Ensemble Initialization and Decadal Forecasting System. J. Clim. 2013, 26, 650–661. [Google Scholar] [CrossRef]
- Mahajan, S.; Zhang, R.; Delworth, T. Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Clim. 2011, 24, 6573–6581. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef]
- Han, W.; Meehl, G.A.; Hu, A.; Alexander, M.A.; Yamagata, T.; Yuan, D.; Ishii, M.; Pegion, P.; Zheng, J.; Hamlington, B.D.; et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 2014, 43, 1357–1379. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F.; Rosati, A.J.; Vecchi, G.A.; Wittenberg, A.T. A link between the hiatus in global warming and North American drought. J. Clim. 2015, 28, 3834–3845. [Google Scholar] [CrossRef]
- Merrifield, M. A shift in western tropical Pacific sea level trends during the 1990s. J. Clim. 2011, 24, 4126–4138. [Google Scholar] [CrossRef]
- Timmermann, A.; McGregor, S.; Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 2010, 23, 4429–4437. [Google Scholar] [CrossRef]
- Luo, J.J.; Sasaki, W.; Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA 2012, 109, 18701–18706. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.; Timmermann, A.; Stuecker, M.F.; England, M.H.; Merrifield, M.; Jin, F.-F.; Chikamoto, Y. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 2014, 4, 888–892. [Google Scholar] [CrossRef]
- Li, X.; Xie, S.-P.; Gille, S.T.; Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 2016, 6, 275–279. [Google Scholar] [CrossRef]
- Lee, S.-K.; Park, W.; Baringer, M.O.; Gordon, A.L.; Huber, B.; Liu, Y. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 2015, 8, 445–449. [Google Scholar] [CrossRef]
- Clement, A.C.; Seager, R.; Cane, M.A.; Zebiac, S.E. An ocean dynamical thermostat. J. Clim. 1996, 9, 2190–2196. [Google Scholar] [CrossRef]
- Tung, K.K.; Zhou, J. The Pacific’s Response to Surface Heating in 130 Years of SST: La Nina-like or El Nino-like? J. Atmos. Sci. 2010, 67, 2649–2657. [Google Scholar] [CrossRef]
- Kohyama, T.; Hartmann, D.L.; Battisti, D.S. La Nina-like mean state response to global warming and potential oceanic roles. J. Clim. 2017, 30, 4208–4225. [Google Scholar] [CrossRef]
- Fyfe, J.; Gillett, N.P. Recent observed and simulated warming. Nat. Clim. Chang. 2014, 4, 150–151. [Google Scholar] [CrossRef]
- Cowtan, K.; Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014, 140, 1935–1944. [Google Scholar] [CrossRef]
- Gleisner, H.; Thejll, P.; Christiansen, B.; Nielsen, J.K. Recent global warming hiatus dominated by low-latitude temperature trends in surface and troposphere data. Geophys. Res. Lett. 2015, 42, 510–517. [Google Scholar] [CrossRef]
- Curry, J. Climate science: Uncertain temperature trend. Nat. Geosci. 2014, 7, 83–84. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Arblaster, J.M.; Fasullo, J.T.; Trenberth, K. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 2013, 26, 7298–7310. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, I.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A. Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M.A. Earth’s energy imbalance. J. Clim. 2014, 27, 3129–3144. [Google Scholar] [CrossRef]
- Loeb, N.G.; Lyman, J.M.; Johnson, G.C.; Allan, R.P.; Doelling, D.R.; Wong, T.; Soden, B.J.; Stephens, G.L. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 2012, 5, 110–113. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.P.; Baringer, M.; Bindoff, N.L.; Boyer, T.; Cheng, L.J.; Church, J.A.; Conroy, J.L.; Domingues, C.M.; Fasullo, J.T.; Gilson, J.; et al. A review of global mean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys. 2013, 51, 450–483. [Google Scholar] [CrossRef]
- Roemmich, D.; Argo-Steering-Team. Argo: The challenge of continuing 10 years of progress. Oceanography 2009, 22, 46–55. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.; Reagan, J.R.; Seidov, D.; Yarosh, E.S.; et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Roemmich, D.; Church, J.; Gilson, J.; Monselesan, D.; Sutton, P.; Wijffels, S. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 2015, 5, 240–245. [Google Scholar] [CrossRef]
- Cheng, L.J.; Zhu, J. Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett. 2014, 41, 7276–7283. [Google Scholar] [CrossRef]
- Ishii, M.; Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 2009, 65, 287–299. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Trenberth, K.E.; Kallen, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 2013, 40, 1754–1759. [Google Scholar] [CrossRef]
- Willis, J.K. Can in situ floats and satellite altimeters detect long-term change in Atlantic Ocean overtuning? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Smeed, D.A.; McCarthy, G.D.; Cunningham, S.A.; Frajka-Williams, E.; Rayner, D.; Johns, W.E.; Meiner, C.S.; Baringer, M.O.; Moat, B.I.; Duchez, A.; et al. Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci. 2014, 10, 29–38. [Google Scholar] [CrossRef]
- McCarthy, G.D.; Smeed, D.A.; Johns, W.E.; Frajka-Williams, E.; Moat, B.I.; Rayner, D.; Baringer, M.O.; Meiner, C.S.; Collins, J.; Bryden, H.L. Measuring the Atlantic Meridional Overturning Circulation at 26 N. Prog. Oceanogr. 2015, 130, 91–111. [Google Scholar] [CrossRef]
- Nieves, V.; Willis, J.K.; Patzert, W.C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 2015, 349, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tung, K.K. Variations in ocean heat uptake during the surface warming hiatus. Nat. Commun. 2016, 7, 12541. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xie, S.-P.; Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 2016, 7, 10926. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Rosenlof, K.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanflord, T.J.; Plattner, G.-K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Daniel, J.S.; Neely, R.R.; Vernier, J.P.; Dutton, E.G.; Thomason, L.W. The persistently variable “background” stratospheric aerosol layer and global climate change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Santer, B.D.; Bonfils, C.; Painter, J.F.; Zelinka, M.D.; Mears, C.; Solomon, S.; Schmidt, G.A.; Fyfe, J.C.; Cole, J.N.S.; Nazarenko, L.; et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 2014, 7, 185–189. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Kauppi, H.; Mann, M.L.; Stock, J.H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA 2011, 108, 11790–11793. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Kharencha, P.; von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 2011, 11, 13421–13449. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Shindell, D.T.; Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 2014, 7, 158–160. [Google Scholar] [CrossRef]
- Kühn, T.; Partanen, A.I.; Laakso, A.; Lu, Z.; Bergman, T.; Mikkonen, S.; Kokkola, H.; Korhonen, H.; Räisänen, P.; Streets, D.G.; et al. Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett. 2014, 41, 4711–4718. [Google Scholar] [CrossRef]
- Trenberth, K.E. Has there been a hiatus? Science 2015, 349, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.; Wallace, J.M.; Branstator, G. Barotropic wave propagation and instability and atmospheric teleconnection patterns. J. Atmos. Sci. 1983, 40, 1363–1392. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Folland, C.K.; Parker, D.; Colman, A.W. Large scale modes of ocean surface temperature since the late nineteenth century. In Beyond El Nino: Decadal and Interdecadal Climate Variability; Navarra, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Dai, A.; Fyfe, J.C.; Xie, S.-P.; Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Clement, A.; DiNezio, P. The tropical Pacific Ocean—Back in the driver’s seat? Science 2014, 343, 976–978. [Google Scholar] [CrossRef] [PubMed]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A. Megadroughts in the Indian Monsoon Region and Southwest North America and a Mechanism for Associated Multidecadal Pacific Sea Surface Temperature Anomalies. J. Clim. 2006, 19, 1605–1623. [Google Scholar] [CrossRef]
- Huang, R.X. Heaving modes in the world oceans. Clim. Dyn. 2015, 45, 3563–3591. [Google Scholar] [CrossRef]
- Sarachik, E.S.; Winton, M.; Yin, F.L. Mechanisms for Decadal-to-Centennial Climate Variability. In Decadal Climate Variability; Anderson, D.T., Willebrand, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 157–210. [Google Scholar]
- Wang, C.; Zhang, L. Multidecadal Ocean Temperature and Salinity Variability in the Tropical North Atlantic: Linking with the AMO, AMOC, and Subtropical Cell. J. Clim. 2013, 26, 6137–6162. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Drijfhout, S.S.; Blaker, A.T.; Josey, S.A.; Nurser, A.J.G.; Sinha, B.; Balmaseda, M.A. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 2014, 41, 7868–7874. [Google Scholar] [CrossRef]
- Watanabe, M.; Shiogama, H.; Tatebe, H.; Hayashi, M.; Ishii, M.; Kimoto, M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Clim. Chang. 2014, 4, 893–897. [Google Scholar] [CrossRef]
- Douville, H.; Voldoire, A.; Geoffroy, O. The recent global warming hiatus: What is the role of Pacific variability? Geophys. Res. Lett. 2015, 42, 880–888. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Branstator, G.; Phillips, A. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Chang. 2014, 4, 911–916. [Google Scholar] [CrossRef]
- Guemas, V.; Douglas-Reyes, F.J.; Andreu-Burrillo, I.; Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang. 2013, 3, 649–653. [Google Scholar] [CrossRef]
- Meehl, G.A.; Teng, H.; Arblaster, J.M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Chang. 2014, 4, 898–902. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Blade, I. The effective number of degrees of freedom of a time-varying field. J. Clim. 1990, 12, 1990–2009. [Google Scholar] [CrossRef]
- Parker, D.; Folland, C.K.; Scaife, A.A.; Knight, J.; Colman, A.W.; Baines, P.; Dong, B. Decadal and multidecadal variability in the climate change background. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Tung, K.K.; Chen, X.; Zhou, J.; Li, K.-F. Interdecadal variability in pan-Pacific and global SST, revisited. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- North, G.R.; Bell, R.L.; Cahalan, R.F. Sampling errors in the estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 10, 699–706. [Google Scholar] [CrossRef]
- Bond, N.A.; Cronin, M.F.; Freeland, H.; Mantua, H. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 2015, 42, 3414–3420. [Google Scholar] [CrossRef]
- Hartmann, D.L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 2015, 42, 1894–1902. [Google Scholar] [CrossRef]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Kostov, Y.; Armour, K.C.; Marshall, J. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 2014, 41, 2108–2116. [Google Scholar] [CrossRef]
2000–2005 | 2005–2014 | 2000–2014 | |
---|---|---|---|
0–200 m | |||
Global | 11 ± 6 | 21 ± 5 | 17 ± 4 |
Atlantic | 14 ± 2 | −7 ± 2 | 0 ± 2 |
Southern Ocean | −6 ± 3 | 11 ± 2 | 3 ± 2 |
Pacific | 8 ± 4 | 4 ± 4 | 2 ± 3 |
Indian Ocean | −5 ± 1 | 13 ± 2 | 11 ± 1 |
200–1500 m | |||
Global | 52 ± 7 | 50 ± 5 | 89 ± 5 |
Atlantic | 31 ± 3 | 8 ± 3 | 26 ± 3 |
Southern Ocean | 12 ± 6 | 27 ± 3 | 37 ± 3 |
Pacific | 6 ± 5 | 7 ± 4 | 11 ± 3 |
Indian Ocean | 3 ± 2 | 8 ± 2 | 14 ± 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, K.-K.; Chen, X. Understanding the Recent Global Surface Warming Slowdown: A Review. Climate 2018, 6, 82. https://doi.org/10.3390/cli6040082
Tung K-K, Chen X. Understanding the Recent Global Surface Warming Slowdown: A Review. Climate. 2018; 6(4):82. https://doi.org/10.3390/cli6040082
Chicago/Turabian StyleTung, Ka-Kit, and Xianyao Chen. 2018. "Understanding the Recent Global Surface Warming Slowdown: A Review" Climate 6, no. 4: 82. https://doi.org/10.3390/cli6040082
APA StyleTung, K.-K., & Chen, X. (2018). Understanding the Recent Global Surface Warming Slowdown: A Review. Climate, 6(4), 82. https://doi.org/10.3390/cli6040082