Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. FlorNExT Pro®
- Number of periods: number of management periods (moments in time in which management operations—thinning, felling, or no-treatment—are applied);
- Maximum number of thinnings: maximum number of thinnings in each management unit or stand;
- Interval between operations: number of periods without management operations in each management unit or stand;
- Starting: year at which optimization starts;
- Amplitude: length of a management period, in years.
2.2. Application
- Data gathering and input;
- Definition of management restrictions, constraints and alternatives;
- Optimization; and
- Analysis of outputs.
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mori Akira, S.; Lertzman Kenneth, P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Lambini, C.K.; Nguyen, T.T.; Abildtrup, J.; Pham, V.D.; Tenhunen, J.; Garcia, S. Are ecosystem services complementary or competitive? An econometric analysis of cost functions of private forests in vietnam. Ecol. Econ. 2018, 147, 343–352. [Google Scholar] [CrossRef]
- Sil, Â.; Rodrigues, A.P.; Carvalho-Santos, C.; Nunes, J.P.; Honrado, J.; Alonso, J.; Marta-Pedroso, C.; Azevedo, J.C. Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mt. Res. Dev. 2016, 36, 452–464. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, J.; Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 2014, 17, 79–86. [Google Scholar] [CrossRef]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Vacik, H.; Borges, J.; Garcia-Gonzalo, J.; Eriksson, L.-O. Decision support for the provision of ecosystem services under climate change: An editorial. Forests 2015, 6, 3212–3217. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Kessler, W.B.; Salwasser, H.; Cartwright, C.W.; Caplan, J.A. New perspectives for sustainable natural-resources management. Ecol. Appl. 1992, 2, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Ribeiro, S.M.; Lovett, A.; O’Riordan, T. Multifunctional forest management in northern Portugal: Moving from scenarios to governance for sustainable development. Land Use Policy 2010, 27, 1111–1122. [Google Scholar] [CrossRef]
- Boyce, S.G. Landscape Forestry; John Wiley & Sons: New York, NY, USA, 1995; p. 239. [Google Scholar]
- Rauscher, H.M. Ecosystem management decision support for federal forests in the united states: A review. For. Ecol. Manag. 1999, 114, 173–197. [Google Scholar] [CrossRef]
- Nobre, S.; Eriksson, L.-O.; Trubins, R. The use of decision support systems in forest management: Analysis of forsys country reports. Forests 2016, 7, 72. [Google Scholar] [CrossRef]
- Packalen, T.; Marques, A.; Rasinmäki, J.; Rosset, C.; Mounir, F.; Rodriguez, L.C.E.; Nobre, S.R. Review. A brief overview of forest management decision support systems (FMDSS) listed in the FORSYS wiki. For. Syst. 2013, 22, 263–269. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Royston, G. The past, present and futures of behavioral operational research. In Behavioral Operational Research. Theory, Methodology and Practice; Mander, C., Malpass, J., White, L., Eds.; Palgrave Macmillan: Basingstoke, UK, 2016; p. 395. [Google Scholar]
- Morse, M.P.; Kimball, G.E. Methods of Operations Research; MIT Press: Cambridge, MA, USA, 1951. [Google Scholar]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—The approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag. 2008, 255, 3222–3241. [Google Scholar] [CrossRef]
- Pukkala, T. Multi-Objective Forest Planning; Springer: Dordrecht, The Netherlands, 2002; p. 208. [Google Scholar]
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Merry, K.; Cieszewski, C. Optimisation in forest management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Pukkala, T. Optimising the management of even-aged pinus sylvestris l. Stands in Galicia, north-western Spain. Ann. For. Sci. 2007, 64, 787–798. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Pukkala, T.; Rojo Alboreca, A. Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire. Int. J. Wildland Fire 2010, 19, 937–948. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.; Borges, J. A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests 2015, 6, 65–87. [Google Scholar] [CrossRef]
- Giménez, J.C.; Bertomeu, M.; Diaz-Balteiro, L.; Romero, C. Optimal harvest scheduling in eucalyptus plantations under a sustainability perspective. For. Ecol. Manag. 2013, 291, 367–376. [Google Scholar] [CrossRef]
- Kašpar, J.; Marušák, R.; Hlavatý, R. A forest planning approach with respect to the creation of overmature reserved areas in managed forests. Forests 2015, 6, 328–343. [Google Scholar] [CrossRef]
- De Pellegrin Llorente, I.; Hoganson, H.; Windmuller-Campione, M.; Miller, S. Using a marginal value approach to integrate ecological and economic objectives across the Minnesota landscape. Forests 2018, 9, 434. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z.; Qin, H. Spatial forest harvest scheduling for areas involving carbon and timber management goals. Forests 2015, 6, 1362–1379. [Google Scholar] [CrossRef]
- Zengin, H.; Asan, Ü.; Destan, S.; Engin Ünal, M.U.; Yeşil, A.; Bettinger, P.; Değermenci, A.S. Modeling harvest scheduling in multifunctional planning of forests for longterm water yield optimization. Nat. Resour. Model. 2015, 28, 59–85. [Google Scholar] [CrossRef]
- Gómez-García, E.; Azevedo, J.C.; Pérez-Rodríguez, F. A compiled project and open-source code to generate web-based forest modelling simulators. Comput. Electron. Agric. 2018, 147, 1–5. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Azevedo, J.C.; Menéndez-Miguélez, M. Resource communication: Apkfor©, an android open-source project for research and technology transfer in forest management. For. Syst. 2018, 26. [Google Scholar] [CrossRef]
- Pérez, F.; Nunes, L.; Sil, A.; Azevedo, J. Flornext®, a cloud computing application to estimate growth and yield of maritime maritime pine (Pinus pinaster Ait.) in north-eastern Portugal. For. Syst. 2016, 25. [Google Scholar] [CrossRef]
- Borges, J.G.; Falcão, A.; Miragaia, C.; Marques, P.; Marques, M. A decision support system for forest resources management in Portugal. In System Analysis in Forest Resources; Arthaud, G.J., Barrett, T.M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 155–163. [Google Scholar]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.-M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Garcia-Gonzalo, J.; Silva, A.; Borges, J.G. Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur. J. For. Res. 2017, 136, 527–542. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.F.; Borges, J.G.; Garcia-Gonzalo, J. Addressing wildfire risk in a landscape-level scheduling model: An application in Portugal. For. Sci. 2015, 61, 266–277. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.; Borges, J.G. A stochastic approach to optimize maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann. Oper. Res. 2014, 219, 359–377. [Google Scholar] [CrossRef]
- Fonseca, T.F.; Cerveira, A.; Mota, A. An integer programming model for a forest harvest problem in Pinus pinaster stands. For. Syst. 2012, 21, 272–283. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Palma, J.; Freire, J.; Tomé, M.; Mateus, R.; Rodriguez, L.C.E.; Bushenkov, V.; Borges, J.G. A decision support system for a multi stakeholder’s decision process in a Portuguese national forest. For. Syst. 2013, 22, 359–373. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Pukkala, T.; Borges, J.G. Integrating fire risk in stand management scheduling. An application to maritime pine stands in Portugal. Ann. Oper. Res. 2014, 219, 379–395. [Google Scholar] [CrossRef]
- Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing multicriteria forest management with pareto frontier methods: An application in Portugal. For. Sci. 2014, 60, 63–72. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Rojo Alboreca, A.; Castedo-Dorado, F.; Álvarez González, J.G.; Barrio-Anta, M.; Crecente-Campo, F.; González González, J.M.; Pérez-Cruzado, C.; Rodríguez Soalleiro, R.; López-Sánchez, C.A.; et al. Herramientas Selvícolas Para la Gestión Forestal Sostenible en Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2009. [Google Scholar]
- Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tome, M.; Oliveira, M.M. Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. For. Syst. 2012, 21, 111–120. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bacao, F.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Alfranca, O.; Bertomeu, M.; Ezquerro, M.; Giménez, J.C.; González-Pachón, J.; Romero, C. Using quantitative techniques to evaluate and explain the sustainability of forest plantations. Can. J. For. Res. 2016, 46, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Lawler, E.L.; Wood, D.E. Branch-and-bound methods: A survey. Oper. Res. 1966, 14, 699–719. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Nunes, L.; Sil, A.; Azevedo, J.C. Flornext Pro. Intellectual Property Rights registration no. 03/2016/571. 2016. Available online: http://hdl.handle.net/10198/13070 (accessed on 15 October 2018).
- Oliveira, A.; Pereira, J.S.; Correia, A.V. A Silvicultura do Pinheiro Bravo; Centro Pinus: Porto, Portugal, 2000; p. 111. [Google Scholar]
- ICNF. Tabela de Taxas e Preços Bens e Serviços. Available online: http://www2.icnf.pt/portal/icnf/serv/resource/doc/tax-serv/20180920-Tabela-precos.pdf (accessed on 31 May 2018).
- Tomé, M.; Ribeiro, F.; Páscoa, F.; Silva, R.; Tavares, M.; Palma, A.; Paulo, M.J.C. Growth trends in Portuguese forests: An exploratory analysis. In Growth Trends in European Forests: Studies from 12 Countries; Spiecker, H., Mielikäinen, K., Köhl, M., Skovsgaard, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 329–353. [Google Scholar]
- Luis, J.F.S.; Fonseca, T.F. The allometric model in the stand density management of Pinus pinaster Ait. Ann. For. Sci. 2004, 61, 807–814. (In Portugal) [Google Scholar] [CrossRef]
- Alegria, C. Simulation of silvicultural scenarios and economic efficiency. For. Syst. 2011, 20, 361–378. [Google Scholar] [CrossRef]
- Del Río, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, R.; Cañellas, I.; Herrero, C.; Montero, G.; Moreno-Fernández, D.; Ruiz-Peinado, R.; Bravo, F. Mediterranean pine forests: Management effects on carbon stocks. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 301–327. [Google Scholar]
- Sil, Â.; Fonseca, F.; Gonçalves, J.; Honrado, J.; Marta-Pedroso, C.; Alonso, J.; Ramos, M.; Azevedo, J.C. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecol. Serv. Manag. 2017, 13, 82–104. [Google Scholar] [CrossRef]
- Barreiro, S.; Rua, J.; Tomé, M. StandsSIM-MD: A Management Driven forest SIMulator. For. Syst. 2016, 25. [Google Scholar] [CrossRef]
- Pretzsch, H. Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions. Forstwiss. Cent. 2002, 121, 28–51. [Google Scholar]
- Nagel, J.; Schmidt, M. The silvicultural decision support system BWINPro. In Sustainable Forest Management: Growth Models for Europe; Hasenauer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 59–63. [Google Scholar]
- Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; de Coligny, F. Capsis: An open software framework and community for forest growth modelling. Ann. For. Sci. 2012, 69, 221–233. [Google Scholar] [CrossRef]
Scenario | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Management Objective | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 * | 21 * | 22 * | 23 | 24 | 25 * | 26 | 27 * | 28 |
Maximization of NPV | NO | NO | NO | YES (10) | YES (10) | YES (5) | YES (2) | YES (8) | YES (4) | NO | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | YES (10) | YES (10) | NO | YES (10) | YES (10) | YES (10) |
Average wood price (€) | ||||||||||||||||||||||||||||
—Thinning | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 30 | 30 | 50 | 15 | 15 | 15 | 15 | 50 | 30 | 15 | 15 | 15 | ||||||||
—Felling | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 50 | 50 | 30 | 26 | 26 | 26 | 26 | 30 | 50 | 26 | 26 | 26 | ||||||||
Discount rate (%) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||
Maximization of volume growth | NO | NO | YES (10) | YES (10) | NO | YES (5) | YES (2) | YES (8) | YES (4) | YES (10) | NO | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | NO | NO | NO | NO | YES | YES | |
Maximization of carbon sequestered | NO | YES (10) | YES (10) | YES (10) | NO | YES (5) | YES (8) | YES (8) | YES (6) | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | NO | YES (10) | NO | NO | YES (10) | YES (10) | YES (10) | NO | |
Minimization of losses due to fire | YES (10) | YES (10) | YES (10) | YES (10) | NO | YES (5) | YES (8) | YES (1) | YES (6) | NO | NO | YES (10) | NO | NO | YES (10) | YES (10) | YES (10) | NO | NO | NO | NO | NO | NO | NO | NO | YES (10) | YES (10) | YES (10) |
Scenario | Extracted Volume (m3) | Pfire | NPV (M€) | C (Mg/ha) | Growth (m3/ha/Year) | Evenness of Harvest Volumes | Wood Prices/Discount Rate |
---|---|---|---|---|---|---|---|
Four objectives (NPV, growth, C, Pfire) | |||||||
4 | 235,314.2 | 0.00697 | 2.511 | 141.1 | 9.121 | No | Standard |
6 | 235,314.2 | 0.00697 | 2.511 | 141.1 | 9.121 | No | Standard |
7 | 294,214.6 | 0.00664 | 3.138 | 126.6 | 8.530 | No | Standard |
8 | 232,473.4 | 0.00742 | 2.484 | 142.0 | 9.288 | No | Standard |
9 | 242,438.3 | 0.00691 | 2.587 | 139.6 | 9.056 | No | Standard |
27 | 193,862.4 | 0.00775 | 2.781 | 126.8 | 8.612 | Yes | Standard |
15 | 203,823.8 | 0.00701 | 1.761 | 142.6 | 9.179 | No | Above standard |
16 | 235,314.2 | 0.00697 | 4.830 | 141.1 | 9.121 | No | Above standard |
17 | 238,715.9 | 0.04554 | 3.012 | 140.7 | 9.108 | No | Above standard |
Three objectives | |||||||
26 (NPV, C, Pfire) | 310,697.7 | 0.00661 | 3.315 | 123.6 | 8.403 | No | Standard |
28 (NPV, growth, Pfire) | 243,418.5 | 0.00695 | 2.598 | 140.3 | 9.089 | No | Standard |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rodríguez, F.; Nunes, L.; Azevedo, J.C. Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate 2018, 6, 81. https://doi.org/10.3390/cli6040081
Pérez-Rodríguez F, Nunes L, Azevedo JC. Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate. 2018; 6(4):81. https://doi.org/10.3390/cli6040081
Chicago/Turabian StylePérez-Rodríguez, Fernando, Luís Nunes, and João C. Azevedo. 2018. "Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes" Climate 6, no. 4: 81. https://doi.org/10.3390/cli6040081
APA StylePérez-Rodríguez, F., Nunes, L., & Azevedo, J. C. (2018). Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate, 6(4), 81. https://doi.org/10.3390/cli6040081