Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015
Abstract
1. Introduction
2. Materials and Methods
2.1. Surface Heat Fluxes
2.2. SOI and SAMi
2.3. Wavelet Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rintoul, S.R.; Hughes, C.; Olbers, D. The Antarctic Circumpolar System. In Ocean Circulation and Climate; Siedler, G., Church, J., Gould, J., Eds.; Academic Press: London, UK, 2001; Volume 77, pp. 562–564. [Google Scholar]
- Cotroneo, Y.; Budillon, G.; Fusco, G.; Spezie, G. Cold core eddies and fronts of the Antarctic Circumpolar Current south of New Zealand from in situ and satellite data. J. Geophys. Res. Oceans 2013, 118, 2653–2666. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D. Southern Ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. J. Geophys. Res. 2017, 122, 10042–10060. [Google Scholar] [CrossRef]
- Thompson, A.F.; Heywood, K.J. Frontal structure and transport in the northwestern Weddell Sea. Deep-Sea Res. I 2008, 55, 1229–1251. [Google Scholar] [CrossRef]
- Misic, C.; Covazzi Harriague, A.; Mangoni, O.; Aulicino, G.; Castagno, P.; Cotroneo, Y. Effects of physical constraints on the lability of POM during summer in the Ross Sea. J. Mar. Syst. 2017, 166, 132–143. [Google Scholar] [CrossRef]
- Mangoni, O.; Saggiomo, V.; Bolinesi, F.; Margiotta, F.; Budillon, G.; Cotroneo, Y.; Misic, C.; Rivaro, P.; Saggiomo, M. Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: Driving factors and trophic implications. PLoS ONE 2017, 12, e0176033. [Google Scholar] [CrossRef] [PubMed]
- Rivaro, P.; Ianni, C.; Langone, L.; Ori, C.; Aulicino, G.; Cotroneo, Y.; Saggiomo, M.; Mangoni, O. Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014. J. Mar. Syst. 2017, 166, 144–158. [Google Scholar] [CrossRef]
- Walsh, J.E. The role of sea ice in climatic variability: Theories and evidence. Atmos.-Ocean 1983, 21, 229–242. [Google Scholar] [CrossRef]
- Clark, P.U.; Pisias, N.G.; Stocker, T.F.; Weaver, A.J. The role of the thermohaline circulation in abrupt climate change. Nature 2002, 415, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 2002, 419, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Maykut, G.A. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 1978, 83, 3646–3658. [Google Scholar] [CrossRef]
- Aulicino, G.; Fusco, G.; Kern, S.; Budillon, G. 1992–2011 sea ice thickness estimation in the Ross and Weddell Seas from SSM/I brightness temperatures. In Proceedings of the Earth Observation and Cryosphere Science ESA SP-712, Frascati, Italy, 13–16 November 2012. [Google Scholar]
- Aulicino, G.; Fusco, G.; Kern, S.; Budillon, G. Estimation of sea-ice thickness in Ross and Weddell Seas from SSM/I brightness temperatures. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4122–4140. [Google Scholar] [CrossRef]
- Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P.O.G.; Holt, B. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. J. Geophys. Res. 2018. [Google Scholar] [CrossRef]
- Fusco, G.; Budillon, G.; Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 2009, 29, 1887–1895. [Google Scholar] [CrossRef]
- Rusciano, E.; Budillon, G.; Fusco, G.; Spezie, G. Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea-Antarctica). Cont. Shelf Res. 2013, 61–62, 112–124. [Google Scholar] [CrossRef]
- Sansiviero, M.; Morales Maqueda, M.Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G. Modelling sea ice formation in the Terra Nova Bay polynya. J. Mar. Syst. 2017, 166, 4–25. [Google Scholar] [CrossRef]
- Aulicino, G.; Sansiviero, M.; Paul, S.; Cesarano, C.; Fusco, G.; Wadhams, P.; Budillon, G. A new approach for monitoring the Terra Nova Bay polynya through MODIS ice surface temperature imagery and its validation during 2010 and 2011 winter seasons. Remote Sens. 2018, 10, 366. [Google Scholar] [CrossRef]
- Seabrooke, J.M.; Hufford, G.L.; Elder, R.B. Formation of Antarctic Bottom Water in the Weddell Sea. J. Geophys. Res. 1971, 76, 2164–2178. [Google Scholar] [CrossRef]
- Gordon, A.L. Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr. 1978, 8, 600–612. [Google Scholar] [CrossRef]
- Orsi, A.H.; Johnson, G.C.; Bullister, J.L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 1999, 43, 55–109. [Google Scholar] [CrossRef]
- Budillon, G.; Fusco, G.; Spezie, G. A study of surface heat fluxes in the Ross Sea (Antarctica). Antarct. Sci. 2000, 12, 243–254. [Google Scholar] [CrossRef]
- Maykut, A. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 1982, 81, 7971–7984. [Google Scholar] [CrossRef]
- Gouretski, V. The large-scale thermohaline structure of the Ross Gyre. In Oceanography of the Ross Sea Antarctica; Spezie, G., Manzella, G.M.R., Eds.; Springer-Verlag: Milan, Italy, 1999; pp. 77–100. [Google Scholar]
- Cerrone, D.; Fusco, G.; Simmonds, I.; Aulicino, G.; Budillon, G. Dominant covarying climate signals in the Southern Ocean and Antarctic sea ice influence during the last three decades. J. Clim. 2017, 30, 3055–3072. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G.; Cotroneo, Y.; Simmonds, I.; Budillon, G. The Antarctic Circumpolar Wave: Its presence and inter–decadal changes during the last 142 years. J. Clim. 2017, 30, 6371–6389. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G. Low-frequency climate modes and Antarctic sea ice variations, 1982–2013. J. Clim. 2018, 31, 147–175. [Google Scholar] [CrossRef]
- Simmonds, I.; King, J.C. Global and hemispheric climate variations affecting the Southern Ocean. Antarct. Sci. 2004, 16, 401–413. [Google Scholar] [CrossRef]
- Simmonds, I.; Rafter, A.; Cowan, T.; Watkins, A.B.; Keay, K. Large-scale vertical momentum, kinetic energy and moisture fluxes in the Antarctic sea-ice region. Bound. Layer Meteorol. 2005, 117, 149–177. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.; Martinson, D. Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett. 2004, 31, 2. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. 2008, 113, C06S91. [Google Scholar] [CrossRef]
- Lefebvre, W.; Goosse, H.; Timmermann, R.; Fichefet, T. Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res. 2004, 109, C09005. [Google Scholar] [CrossRef]
- Turner, J. The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol. 2004, 24, 1–31. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T. Tropical origins for recent North Atlantic climate change. Science 2001, 292, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T.; Bates, G.T.; Phillips, A.S. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim. Dyn. 2004, 23, 391–405. [Google Scholar] [CrossRef]
- Cullather, R.I.; Bromwich, D.H.; Van Woert, M.L. Interannual variations in Antarctic precipitation related to ElNiño–Southern Oscillation. J. Geophys. Res. 1996, 10, 19109–19118. [Google Scholar]
- Yuan, X.; Cane, M.A.; Martinson, D.G. Climate variation-cycling around the South Pole. Nature 1996, 380, 673–674. [Google Scholar] [CrossRef]
- Harangozo, S.A. A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter. Int. J. Climatol. 2000, 20, 663–679. [Google Scholar] [CrossRef]
- Yuan, X.; Martinson, D.G. The Antarctic dipole and its predictability. Geophys. Res. Lett. 2001, 28, 3609–3612. [Google Scholar] [CrossRef]
- White, W.B.; Peterson, R.G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 1996, 380, 699–702. [Google Scholar] [CrossRef]
- Gille, S.; Josey, S.; Swart, S. New approaches for air-sea fluxes in the Southern Ocean. EOS 2016, 97. [Google Scholar] [CrossRef]
- Bourassa, M.A.; Gille, S.; Bitz, C.; Carlson, D.; Cerovecki, I.; Clayson, C.A.; Cronin, M.F.; Drennan, W.M.; Fairall, C.W.; Hoffman, R.N.; et al. High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Am. Meteorol. Soc. 2013, 94, 403–423. [Google Scholar] [CrossRef]
- Cullather, R.I.; Bromwich, D.H. Validation of operational numerical analyses in Antarctic latitudes. J. Geophys. Res. 1997, 102, 13761–13784. [Google Scholar] [CrossRef]
- Fusco, G.; Flocco, D.; Budillon, G.; Spezie, G.; Zambianchi, E. Dynamics and variability of Terra Nova Bay polynya. PSZN Mar. Ecol. 2002, 23, 201–209. [Google Scholar] [CrossRef]
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Berliand, M.; Berliand, T. Determining the net longwave radiation of the Earth with consideration of the effect of cloudiness. Izvestia Akademii Naiik SSSR Seriya Geofizrka 1952, 1, 64–78. [Google Scholar]
- Simonsen, K.; Haugan, P.M. Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res. 1996, 101, 6553–6576. [Google Scholar] [CrossRef]
- Troup, A.J. The Southern Oscillation. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Marshall, G.J. National Center for Atmospheric Research Staff (Eds.): The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-Based). Available online: https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based (accessed on 10 June 2016).
- Swart, N.C.; Fyfe, J.C.; Gillett, N. Comparing trends in the southern annular mode and surface westerly jet. J. Clim. 2015, 28, 8840–8859. [Google Scholar] [CrossRef]
- Pozo-Vàsquez, D.; Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Astudy of NAO variability and its possible non-linear influences on European surface temperature. Clim. Dyn. 2001, 17, 701–715. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 1990, 36, 961–1004. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Woodworth, P.L.; Grinsted, A. Influence of large scale atmospheric circulation on the European sea level: Results based on the wavelet transform method. Tellus A 2005, 57, 129–149. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross-wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004, 11, 562–564. [Google Scholar] [CrossRef]
- Yeo, S.R.; Kim, K.Y. Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Clim. Dyn. 2015, 45, 3227–3242. [Google Scholar] [CrossRef]
- Yuan, X.; Yonekura, E. Decadal variability in the Southern Hemisphere. J. Geophys. Res. 2011, 116, D19. [Google Scholar] [CrossRef]
- White, W.B.; Gloersen, P.; Simmonds, I. Troposphere response in the Antarctic Circumpolar Wave along the sea ice edge around Antarctica. J. Clim. 2004, 17, 2765–2779. [Google Scholar] [CrossRef]
Surface Heat Fluxes Estimated Using Constant and Variable Sea Ice Data | ||||||
---|---|---|---|---|---|---|
ROSS SEA | WEDDELL SEA | |||||
Year | QT Const Ice | QT Var Ice | Difference | QT Const Ice | QT Var Ice | Difference |
1992 | −71 | −70 | −1 | −84 | −78 | −6 |
1993 | −79 | −77 | −2 | −84 | −81 | −3 |
1994 | −82 | −76 | −6 | −88 | −80 | −8 |
1995 | −75 | −74 | −1 | −77 | −72 | −5 |
1996 | −82 | −78 | −4 | −74 | −70 | −4 |
1997 | −71 | −60 | −11 | −86 | −77 | −9 |
1998 | −78 | −74 | −4 | −73 | −71 | −2 |
1999 | −75 | −72 | −3 | −65 | −55 | −10 |
2000 | −75 | −72 | −3 | −82 | −79 | −3 |
2001 | −74 | −71 | −3 | −75 | −66 | −9 |
2002 | −71 | −72 | 1 | −89 | −88 | −1 |
2003 | −92 | −91 | −1 | −91 | −85 | −6 |
2004 | −89 | −87 | −2 | −89 | −85 | −4 |
2005 | −85 | −82 | −3 | −78 | −78 | 0 |
2006 | −81 | −77 | −4 | −81 | −80 | −1 |
2007 | −93 | −86 | −7 | −91 | −82 | −9 |
2008 | −98 | −85 | −13 | −93 | −93 | 0 |
2009 | −91 | −87 | −4 | −97 | −95 | −2 |
2010 | −96 | −93 | −3 | −85 | −83 | −2 |
2011 | −83 | −80 | −3 | −96 | −92 | −4 |
2012 | −90 | −88 | −2 | −98 | −95 | −3 |
Mean | −82 | −79 | −4 | −85 | −80 | −4 |
Stdv | 9 | 8 | 3 | 9 | 10 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, G.; Cotroneo, Y.; Aulicino, G. Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate 2018, 6, 17. https://doi.org/10.3390/cli6010017
Fusco G, Cotroneo Y, Aulicino G. Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate. 2018; 6(1):17. https://doi.org/10.3390/cli6010017
Chicago/Turabian StyleFusco, Giannetta, Yuri Cotroneo, and Giuseppe Aulicino. 2018. "Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015" Climate 6, no. 1: 17. https://doi.org/10.3390/cli6010017
APA StyleFusco, G., Cotroneo, Y., & Aulicino, G. (2018). Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate, 6(1), 17. https://doi.org/10.3390/cli6010017