Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Quality and Homogeneity Adjustment
2.2. Heat Wave Indices and Characteristics
- HWN—the yearly number of heat waves;
- HWD—the length (in days) of the longest yearly event;
- HWF—the sum of participating heat wave days per year
- HWA—the hottest day (amplitude) of the hottest yearly event;
- HWM—the mean event intensity averaging all participating event days
ID | Heat Wave Aspect | Definition | Unit |
---|---|---|---|
HWN | Heat wave number | The annual number of summer (May-Sep) heat waves where conditions persist for at least 3 consecutive days with positive EHF values | Number of events |
HWD | Heat wave duration | The length of the longest summer (May-Sep) heat wave where conditions persist for at least 3 consecutive days with positive EHF values | days |
HWF | Heat wave day frequency | The total number of days each summer (May-Sep) that contribute to all heat waves where conditions persist for at least 3 consecutive days with positive EHF values | days |
HWA | Heat wave amplitude | The hottest day of the hottest summer (May-Sep) heat wave where conditions persist for at least 3 consecutive days with positive EHF values | °C2 |
HWM | Heat wave mean | Average magnitude of all summer (May-Sep) heat wave days where conditions persist for at least 3 consecutive days with positive EHF values | °C2 |
HWday | Heat wave days | The annual number of all summer (May-Sep) heat wave days with positive EHF values | days |
HWsev | Heat wave severe days | The annual number of all severe summer (May-Sep) heat wave days with positive EHF values above the station’s severe EHF threshold at EHF85 (85th percentile of the station’s distribution of positive EHF values) | days |
HWex | Heat wave extreme days | The annual number of all extreme summer (May-Sep) heat wave days with positive EHF values that at least double the station’s severe EHF threshold at EHF85 (85th percentile of the station’s distribution of positive EHF values) | days |
2.3. Severe and Extreme Heat Waves
3. Results and Discussion
3.1. Heat Wave Climatology
Heat Wave Aspect for EHF Index | Annual Average (1961–1990) |
---|---|
Heat Wave Number (no. of events) | 1.7 |
Heat Wave Duration (days) | 5.5 |
Heat Wave Frequency (days) | 10.4 |
Heat Wave Amplitude (°C2) | 12.2 |
Heat Wave Mean Magnitude (°C2) | 4.3 |
Heat Wave Days (days) | 10.3 |
Severe Heat Wave Days (days) | 1.3 |
Extreme Heat Wave Days (days) | 0.3 |
3.2. Changes in Heat Wave Characteristics
Heat Wave Aspect for EHF Index | Trend Magnitude/Decade (1961–2010) |
---|---|
Heat Wave Number (no. of events) | 0.4 (0.2 to 0.6) |
Heat Wave Duration (days) | 0.9 (0.5 to 1.5) |
Heat Wave Frequency (days) | 2.9 (1.5 to 4.7) |
Heat Wave Amplitude (°C2) | 1.1 (0.2 to 2.2) |
Heat Wave Mean Magnitude (°C2) | 0.0 (−0.4 to 0.3) |
Heat Wave Days (days) | 3.3 (1.9 to 5.2) |
Severe Heat Wave Days (days) | 0.37 (0.14 to 0.77) |
Extreme Heat Wave Days (days) | 0.05 (0.00 to 0.17) |
Heat Wave Index * | HWN | HWD | HWF | HWA | HWM |
---|---|---|---|---|---|
CTN90pct | 0.50 (−0.2 to 0.4) | 0.65 (0.2 to 1.2) | 2.82 (1.0 to 4.7) | 0.53 (0.2 to 0.9) | 0.32 (0.1 to 0.6) |
CTX90pct | 0.41 (0.0 to 0.5) | 0.62 (0.3 to 1.0) | 1.80 (0.6 to 3.0) | 0.32 (−0.1 to 0.7) | 0.24 (0.0 to 0.5) |
3.3. Severe Heat Waves over Tbilisi
Parameter | Annual Average (1961–1990) | Annual Trend/Decade |
---|---|---|
Tmin (°C) | 16.0 | 0.32 (0.22 to 0.43) |
Tmax (°C) | 27.4 | 0.38 (0.18 to 0.57) |
TN90p (°C) | 10.3 | 3.4 (2.3 to 5.0) |
TX90p (°C) | 10.7 | 2.7 (1.2 to 4.3) |
HWN (no. of events) | 1.7 | 0.7 (0.3 to 1.1) |
HWD (days) | 6.2 | 1.0 (0.3 to 1.8) |
HWF (days) | 11.0 | 4.3 (1.6 to 6.7) |
HWA (°C2) | 8.2 | 0.9 (−0.2 to 2.2) |
HWM (°C2) | 3.2 | 0.0 (−0.4 to 0.5) |
HWday (days) | 10.9 | 5.5 (2.8 to 7.1) |
HWsev (days) | 1.2 | 0.32 (0.0 to 1.1) |
HWex (days) | 0.1 | n/a |
Year | Rank | Date | Peak EHF (°C2) | Heat Load (°C2) | Average Heat Load (°C2) | EHF Event Duration (Days) |
---|---|---|---|---|---|---|
1971 | 2 | 6 May | 26.1 | 78 | 12.9 | 6 |
1995 | 3 | 24 May | 23.7 | 103 | 12.9 | 8 |
1997 | 5 | 10 May | 17.9 | 57 | 11.3 | 5 |
1998 | 4 | 31 Aug | 20.1 | 147 | 10.5 | 14 |
2007 | 1 | 28 May | 36.9 | 203 | 20.3 | 10 |
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Appendix
Station Name | WMO Code | North Latitude | East Longitude | Altitude (m) |
---|---|---|---|---|
Abastumani | 37503 | 41.72 | 42.83 | 1265 |
Ahalcihe | 37506 | 41.63 | 42.98 | 982 |
Akhalkalaki | 37602 | 41.40 | 43.47 | 1716 |
Ambrolauri | 37308 | 42.52 | 43.13 | 544 |
Batumi | 37484 | 41.63 | 41.60 | 32 |
Dedopliskaro | 37651 | 41.50 | 46.10 | 800 |
Goderdzi Pass | 37507 | 41.60 | 42.50 | 2025 |
Gori | 37531 | 41.98 | 44.12 | 590 |
Kashuri | 37417 | 42.00 | 43.60 | 690 |
Khulo | 37498 | 41.63 | 42.30 | 946 |
Kobuleti | 37481 | 41.87 | 41.77 | 7 |
Kutaisi | 37395 | 42.20 | 42.60 | 116 |
Kvareli | 37563 | 41.97 | 45.83 | 449 |
Lentekhi | 37295 | 42.77 | 42.72 | 731 |
Pasanauri | 37432 | 42.35 | 44.70 | 1064 |
Sachkere | 37403 | 42.35 | 43.40 | 455 |
Sagaredjo | 37556 | 41.73 | 45.33 | 806 |
Samtredia | 37385 | 42.18 | 42.37 | 26 |
Tbilisi | 37546 | 41.68 | 44.95 | 427 |
Telavi | 37553 | 41.93 | 45.38 | 562 |
Tsalka | 37537 | 41.60 | 44.07 | 1458 |
Zemo-Azhara | 37196 | 43.10 | 41.73 | 2037 |
Conflicts of Interest
References
- Karl, T.R.; Knight, R.W. The 1995 Chicago heat wave: How likely is a recurrence? Bull. Am. Meteor. Soc. 1997, 78, 1107–1119. [Google Scholar] [CrossRef]
- Trigo, R.; Garia-Herrera, R.; Diaz, J.; Trigo, I.; Valente, M. How exceptional was the early August 2003 heatwave in France? Geophys. Res. Lett. 2005, 32, L10701. [Google Scholar] [CrossRef]
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Ribéron, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 heat wave in France: Risk factors for death of elderly people living at home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.L.; Ren, C.; Becker, N. Excess deaths during the 2004 heatwave in Brisbane, Australia. Int. J. Biometeorol. 2010, 54, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Lanning, S.B.; Siebenmorgen, T.J.; Counce, P.A.; Ambardekar, A.A.; Mauromoustakos, A. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Res. 2011, 124, 132–136. [Google Scholar] [CrossRef]
- Smoyer-Tomic, K.E.; Kuhn, R.; Hudson, A. Heat wave hazards: An overview of heat wave impacts in Canada. Nat. Hazard 2003, 28, 463–485. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Kharin, V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.A.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.; Lüthi, D.; Litschi, M.; Schär, C. Landatmosphere coupling and climate change in Europe. Nature 2006, 443, 203–206. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Luterbacher, J.; von Weissenfluh, H.; Xoplaki, E.; Brunet, M.; Wanner, H. Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim. Dyn. 2007, 29, 251–275. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.; Lüthi, D.; Schär, C. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 2007, 34, L06707. [Google Scholar]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Kuglitsch, F.G.; Toreti, A.; Xoplaki, E.; Della-Marta, P.M.; Zerefos, C.S.; Türkeş, M.; Luterbacher, J. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37, L04802. [Google Scholar] [CrossRef]
- Grumm, R.H. The Central European and Russian heat event of July–August 2010. Bull. Am. Meteor. Soc. 2011, 92, 1285–1296. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef]
- Shahgedanova, M. Climate at present and in the historical past. In The Physical Geography of Northern Eurasia: Russia and Neighbouring States; Shahgedanova, M., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 70–102. [Google Scholar]
- Keggenhoff, I.; Elizbarashvili, M.; King, L. Recent changes in Georgia’s temperature means and extremes: Annual and seasonal trends between 1961 and 2010. Weather Clim. Extremes 2014. [Google Scholar] [CrossRef]
- MOE. Georgia’s Second National Communication under the United Nations Framework Convention on Climate Change; Ministry of Environment Protection and Natural Resources of Georgia: Georgia, Tbilisi, 2009. [Google Scholar]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing all Community and Business Sectors in Australia; CAWCR Technical Report, No. 060; Centre for Australian Weather and Climate Research: Melbourne, Vic, Australia, 2013. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Role of soil moisture in the amplification of climate warming in the Eastern Mediterranean and the Middle East. Clim. Res. 2014, 59, 27–37. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Enironm. Chang. 2015. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Giannakopoulos, C.; Tanarhte, M.; Tyrlis, E. Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Reg. Environ. Chang. 2013, 14, 1937–1949. [Google Scholar] [CrossRef]
- Elizbarashvili, E.S.; Tatishvili, M.R.; Elizbarashvili, M.E.; Elizbarashvili, S.E.; Meskhiya, R.S. Air temperature trends in Georgia under global warming conditions. Russ. Meteorol. Hydrol. 2013, 38, 234–238. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar]
- Fischer, E.M.; Lawrence, D.M.; Sanderson, B.M. Quantifying uncertainties in projections of extremes—A perturbed land surface parameter experiment. Clim. Dyn. 2011, 37, 1381–1398. [Google Scholar] [CrossRef]
- Collins, D.A.; Della-Marta, P.M.; Plummer, N.; Trewin, B.C. Trends in annual frequencies of extremes temperature events in Australia. Aust. Meteor. Mag. 2000, 49, 277–292. [Google Scholar]
- Pezza, A.B.; van Rensch, P.; Cai, W. Severe heat waves in southern Australia: Synoptic climatology and large scale connections. Clim. Dyn. 2012, 38, 209–224. [Google Scholar] [CrossRef]
- Perkins, S.; Alexander, L. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R.; Robert, J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef]
- Langlois, N.; Herbst, J.; Mason, K.; Nairn, J.; Byard, R.W. Using the Excess Heat Factor (EHF) to predict the risk of heat related deaths. J. Forensic Legal Med. 2013, 20, 408–411. [Google Scholar] [CrossRef]
- Wilson, L.; Morgan, G.; Hanigan, I.; Johnston, F.; Abu-Rayya, H.; Broome, R.; Gaskin, C.; Jalaludin, B. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: A case crossover analysis. Environ. Health A Glob. Access Sci. Source 2013, 12, 1–14. [Google Scholar]
- Wang, X.L. A Quantile Matching Adjustment Algorithm for Gaussian Data Series. Available online: http://etccdi.pacificclimate.org/RHtest/QMadj_Gaussian.pdf (accessed on 20 February 2015).
- Wang, X.L.; Feng, Y. RHtestsV3. User Manual; Environment Canada: Ottawa, Canada, 2010. [Google Scholar]
- Alexander, L.; Yang, H.; Perkins, S. ClimPACT—Indices and Software. User Manual. Available online: http://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/meetings/documents/ETCRSCI_software_documentation_v2a.doc (accessed on 20 February 2015).
- Sen, P.K. Estimates of regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Taha, H. Urban climates and heat islands: Albedo, evapotransipiration and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 32, L23822. [Google Scholar] [CrossRef]
- Zhang, X.; Aguilar, E.; Sensoy, S.; Melkonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. 2005, 110, D22104. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D.; Lister, D.; Walther, A.; Alexander, L.V.; Brunet, M.; Chen, D.; Della-Marta, P.M.; Jacobeit, J.; Luterbacher, J.; et al. Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901–2000. J. Geophys. Res. 2006, 111, D22106. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keggenhoff, I.; Elizbarashvili, M.; King, L. Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity. Climate 2015, 3, 308-328. https://doi.org/10.3390/cli3020308
Keggenhoff I, Elizbarashvili M, King L. Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity. Climate. 2015; 3(2):308-328. https://doi.org/10.3390/cli3020308
Chicago/Turabian StyleKeggenhoff, Ina, Mariam Elizbarashvili, and Lorenz King. 2015. "Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity" Climate 3, no. 2: 308-328. https://doi.org/10.3390/cli3020308
APA StyleKeggenhoff, I., Elizbarashvili, M., & King, L. (2015). Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity. Climate, 3(2), 308-328. https://doi.org/10.3390/cli3020308