Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Models and Experiments
| Model Name | Institution | Volcanic Forcing |
|---|---|---|
| ACCESS-CM2 | Australian Research Council Centre of Excellence for Climate System Science | Interactive |
| ACCESS-ESM1-5 | Australian Research Council Centre of Excellence for Climate System Science | Sato et al. [33] |
| CanESM5 | Canadian Centre for Climate Modelling and Analysis | Interactive |
| CESM2 | National Centre for Atmospheric Research | Neely and Schmidt [34] |
| CNRM-CM6-1 | National Center for Meteorological Research | Thomason et al. [32] |
| GISS-E2-1-G | National Aeronautics and Space Administration | Thomason et al. [32] |
| GISS-E2-1-H | National Aeronautics and Space Administration | Thomason et al. [32] |
| INM-CM5-0 | Russian Academy of Science | Interactive |
| IPSL-CM6A-LR | Institute Pierre Simon Laplace | Thomason et al. [32] |
| MIROC-ES2L | Atmosphere and Ocean Research Institute | Interactive |
| MIROC6 | Atmosphere and Ocean Research Institute | Thomason et al. [32] |
| MPI-ESM 1-2-HR | Deutsches Klimarechenzentrum | Interactive |
| MPI-ESM 1-2-LR | Deutsches Klimarechenzentrum | Interactive |
| MRI-ESM 2-0 | Meteorological Research Institute | Thomason et al. [32] |
| NorCPM1 | Korea Meteorological Administration | Thomason et al. [32] |
| UKESM1-0-LL | Korea Meteorological Administration | Interactive |
| Model Name | Initialization | Institution | Reference |
|---|---|---|---|
| EC-Earth3 | Full-field | Barcelona Supercomputing Center | Bilbao et al. [35] |
| CESM1-1-CAM5-CMIP5 | Full-field | National Centre for Atmospheric Research | Yeager et al. [36] |
| CMCC-CM2-SR5 | Full-field | Centro Euro-Mediterraneo sui Cambiamenti Climatici | Nicolì et al. [37] |
| CanESM5 | Full-field | Canadian Centre for Climate Modelling and Analysis | Sospedra-Alfonso et al. [38] |
| HadGEM3-GC31 | Full-field | UK Meteorological Office | Williams et al. [39] |
2.2. Classification of Volcano Events
2.3. Superposed Epoch Analysis
3. Results
3.1. Model Performance and Evaluation
3.2. Radiative Forcing and SAT Response
3.3. Precipitation and Zonal-Mean Response
3.4. ENSO-like Response
4. Discussion
4.1. Vertical Structure of Temperature Anomalies and Mechanisms of Volcanic Eruptions
4.2. Contribution of Internal Variability Based on DCPP Experiments
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CMIP6 | Coupled Model Intercomparison Project Phase 6 |
| DCPP | Decadal Climate Prediction Project |
| DCPP-A | Decadal Climate Prediction Project Component A |
| DCPP-C | Decadal Climate Prediction Project Component C |
| ITCZ | Intertropical convergence zone |
| ENSO | El Niño–Southern Oscillation |
| SAT | Surface Air Temperature |
| SST | Sea Surface Temperature |
| TR | Tropical |
| NH | Northern Hemisphere |
| SH | Southern Hemisphere |
References
- Trenberth, K.E.; Dai, A. Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle as an Analog of Geoengineering. Geophys. Res. Lett. 2007, 34, L15702. [Google Scholar] [CrossRef]
- Iles, C.E.; Hegerl, G.C.; Schurer, A.P.; Zhang, X.B. The Effect of Volcanic Eruptions on Global Precipitation. J. Geophys. Res. Atmos. 2013, 118, 8770–8786. [Google Scholar] [CrossRef]
- Man, W.M.; Zhou, T.J.; Jungclaus, J.H. Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes during the Last Millennium: Analysis of MPI-ESM Simulations. J. Clim. 2014, 27, 7394–7409. [Google Scholar] [CrossRef]
- Zambri, B.; Robock, A. Winter Warming and Summer Monsoon Reduction after Volcanic Eruptions in Coupled Model Intercomparison Project 5 (CMIP5) Simulations. Geophys. Res. Lett. 2016, 43, 10920–10928. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Observational Evidence for Volcanic Impact on Sea Level and the Global Water Cycle. Proc. Natl. Acad. Sci. USA 2007, 104, 19730–19734. [Google Scholar]
- Mass, C.F.; Portman, D.A. Major Volcanic Eruptions and Climate: A Critical Evaluation. J. Clim. 1989, 2, 566–593. [Google Scholar] [CrossRef]
- Joseph, R.; Zeng, N. Seasonally Modulated Tropical Drought Induced by Volcanic Aerosol. J. Clim. 2011, 24, 2045–2060. [Google Scholar] [CrossRef]
- Fadnavis, S.; Müller, R.; Chakraborty, T.; Sabin, T.P.; Laakso, A.; Rap, A.; Griessbach, S.; Vernier, J.-P.; Tilmes, S. The Role of Tropical Volcanic Eruptions in Exacerbating Indian Droughts. Sci. Rep. 2021, 11, 2714. [Google Scholar] [CrossRef]
- Dogar, M.M.; Hermanson, L.; Scaife, A.A.; Visioni, D.; Zhao, M.; Hoteit, I.; Graf, H.-F.; Dogar, M.A.; Almazroui, M.; Fujiwara, M. A Review of El Niño Southern Oscillation Linkage to Strong Volcanic Eruptions and Post-Volcanic Winter Warming. Earth Syst. Environ. 2023, 7, 15–42. [Google Scholar]
- Stevenson, S.; Fasullo, J.T.; Otto-Bliesner, B.L.; Tomas, R.A.; Gao, C.C. Role of Eruption Season in Reconciling Model and Proxy Responses to Tropical Volcanism. Proc. Natl. Acad. Sci. USA 2017, 114, 1822–1826. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.B.; Wang, B.; Liu, J.; Li, T.; Huang, G.; Wang, Z.Y. Divergent El Niño Responses to Volcanic Eruptions at Different Latitudes over the Past Millennium. Clim. Dyn. 2018, 50, 3799–3812. [Google Scholar]
- Zuo, M.; Man, W.; Zhou, T.; Guo, Z. Different Impacts of Northern, Tropical, and Southern Volcanic Eruptions on the Tropical Pacific SST in the Last Millennium. J. Clim. 2018, 31, 6729–6744. [Google Scholar] [CrossRef]
- Erez, M.; Adam, O. Energetic Constraints on the Time-Dependent Response of the ITCZ to Volcanic Eruptions. J. Clim. 2021, 34, 9989–10006. [Google Scholar]
- Toohey, M.; Krüger, K.; Schmidt, H.; Timmreck, C.; Sigl, M.; Stoffel, M.; Wilson, R. Disproportionately Strong Climate Forcing from Extratropical Explosive Volcanic Eruptions. Nat. Geosci. 2019, 12, 100–107. [Google Scholar] [CrossRef]
- Yang, W.; Vecchi, G.A.; Fueglistaler, S.; Horowitz, L.W.; Luet, D.J.; Muñoz, Á.G.; Paynter, D.; Underwood, S. Climate Impacts from Large Volcanic Eruptions in a High-Resolution Climate Model: The Importance of Forcing Structure. Geophys. Res. Lett. 2019, 46, 7690–7699. [Google Scholar]
- Zanchettin, D.; Bothe, O.; Timmreck, C.; Bader, J.; Beitsch, A.; Graf, H.-F.; Notz, D.; Jungclaus, J.H. Inter-Hemispheric Asymmetry in the Sea-Ice Response to Volcanic Forcing Simulated by MPI-ESM (COSMOS-Mill). Earth Syst. Dyn. 2014, 5, 223–242. [Google Scholar] [CrossRef]
- Pauling, A.G.; Bushuk, M.; Bitz, C.M. Robust Inter-Hemispheric Asymmetry in the Response to Symmetric Volcanic Forcing in Model Large Ensembles. Geophys. Res. Lett. 2021, 48, e2021GL092558. [Google Scholar] [CrossRef]
- Clement, A.C.; Seager, R.; Cane, M.A.; Zebiak, S.E. An Ocean Dynamical Thermostat. J. Clim. 1996, 9, 2190–2196. [Google Scholar] [CrossRef]
- Hirono, M. On the Trigger of El Niño Southern Oscillation by the Forcing of Early El Chichón Volcanic Aerosols. J. Geophys. Res. Biogeosci. 1988, 93, 5365–5384. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric Teleconnections from the Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Predybaylo, E.; Stenchikov, G.L.; Wittenberg, A.T.; Zeng, F. Impacts of a Pinatubo-Size Volcanic Eruption on ENSO. J. Geophys. Res. Atmos. 2017, 122, 925–947. [Google Scholar]
- Maher, N.; McGregor, S.; England, M.H.; Sen Gupta, A. Effects of Volcanism on Tropical Variability. Geophys. Res. Lett. 2015, 42, 6024–6033. [Google Scholar] [CrossRef]
- Khodri, M.; Izumo, T.; Vialard, J.; Janicot, S.; Cassou, C.; Lengaigne, M.; Mignot, J.; Gastineau, G.; Guilyardi, E.; Lebas, N.; et al. Tropical Explosive Volcanic Eruptions Can Trigger El Niño by Cooling Tropical Africa. Nat. Commun. 2017, 8, 1234. [Google Scholar] [PubMed]
- Stenchikov, G.; Hamilton, K.; Stouffer, R.J.; Robock, A.; Ramaswamy, V.; Santer, B.; Graf, H. Arctic Oscillation Response to Volcanic Eruptions in the IPCC AR4 Climate Models. J. Geophys. Res. Atmos. 2006, 111, D07107. [Google Scholar] [CrossRef]
- Deser, C.; Lehner, F.; Rodgers, K.B.; Ault, T.; Delworth, T.L.; DiNezio, P.N.; Fiore, A.; Frankignoul, C.; Fyfe, J.C.; Horton, D.E.; et al. Insights from Earth System Model Initial-Condition Large Ensembles and Future Prospects. Nat. Clim. Change 2020, 10, 277–286. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zanchettin, D.; Khodri, M.; Timmreck, C.; Toohey, M.; Schmidt, A.; Gerber, E.P.; Hegerl, G.; Robock, A.; Pausata, F.S.R.; Ball, W.T.; et al. The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6. Geosci. Model Dev. 2016, 9, 2701–2719. [Google Scholar] [CrossRef]
- Pausata, F.S.R.; Chafik, L.; Caballero, R.; Battisti, D.S. Impacts of High-Latitude Volcanic Eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA 2015, 112, 13784–13788. [Google Scholar] [CrossRef]
- Boer, G.J.; Smith, D.M.; Cassou, C.; Doblas-Reyes, F.; Danabasoglu, G.; Kirtman, B.; Kushnir, Y.; Kimoto, M.; Meehl, G.A.; Msadek, R.; et al. The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6. Geosci. Model Dev. 2016, 9, 3751–3777. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An Updated Assessment of Near-Surface Temperature Change from 1850: The HadCRUT5 Dataset. J. Geophys. Res. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s New Land Surface Precipitation Climatology Based on Quality-Controlled In Situ Data and Its Role in Quantifying the Global Water Cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Thomason, L.W.; Ernest, N.; Millán, L.; Rieger, L.; Bourassa, A.; Vernier, J.-P.; Manney, G.; Luo, B.; Arfeuille, F.; Peter, T. A Global Space-Based Stratospheric Aerosol Climatology: 1979–2016. Earth Syst. Sci. Data 2018, 10, 469–492. [Google Scholar] [CrossRef]
- Sato, M.; Hansen, J.E.; McCormick, M.P.; Pollack, J.B. Stratospheric Aerosol Optical Depths, 1850–1990. J. Geophys. Res. Atmos. 1993, 98, 22987–22994. [Google Scholar] [CrossRef]
- Neely, R.R., III; Schmidt, A. VolcanEESM: Global Volcanic Sulphur Dioxide (SO2) Emissions Database from 1850 to Present; Centre for Environmental Data Analysis: Chilton, UK, 2016. [Google Scholar] [CrossRef]
- Bilbao, R.; Wild, S.; Ortega, P.; Acosta-Navarro, J.; Arsouze, T.; Bretonnière, P.-A.; Caron, L.-P.; Castrillo, M.; Cruz-García, R.; Cvijanovic, I.; et al. Assessment of a Full-Field Initialized Decadal Climate Prediction System with the CMIP6 Version of EC-Earth. Earth Syst. Dyn. 2021, 12, 173–196. [Google Scholar] [CrossRef]
- Yeager, S.G.; Danabasoglu, G.; Rosenbloom, N.A.; Strand, W.; Bates, S.C.; Meehl, G.A.; Karspeck, A.R.; Lindsay, K.; Long, M.C.; Teng, H.; et al. Predicting Near-Term Changes in the Earth System: A Large Ensemble of Initialized Decadal Prediction Simulations Using the Community Earth System Model. Bull. Am. Meteorol. Soc. 2018, 99, 1867–1886. [Google Scholar] [CrossRef]
- Nicolì, D.; Bellucci, A.; Ruggieri, P.; Athanasiadis, P.J.; Materia, S.; Peano, D.; Fedele, G.; Hénin, R.; Gualdi, S. The Euro-Mediterranean Center on Climate Change (CMCC) Decadal Prediction System. Geosci. Model Dev. 2023, 16, 179–197. [Google Scholar] [CrossRef]
- Sospedra-Alfonso, R.; Merryfield, W.J.; Boer, G.J.; Kharin, V.V.; Lee, W.-S.; Seiler, C.; Christian, J.R. Decadal Climate Predictions with the Canadian Earth System Model Version 5 (CanESM5). Geosci. Model Dev. 2021, 14, 6863–6891. [Google Scholar] [CrossRef]
- Williams, K.D.; Copsey, D.; Blockley, E.W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H.T.; Hill, R.; et al. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Syst. 2018, 10, 357–380. [Google Scholar] [CrossRef]
- Liu, F.; Chai, J.; Wang, B.; Liu, J.; Zhang, X.; Wang, Z.Y. Global Monsoon Precipitation Responses to Large Volcanic Eruptions. Sci. Rep. 2016, 6, 24331. [Google Scholar] [CrossRef]
- Stevenson, S.; Otto-Bliesner, B.; Fasullo, J.; Brady, E. “El Niño Like” Hydroclimate Responses to Last Millennium Volcanic Eruptions. J. Clim. 2016, 29, 2907–2921. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.W.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and Climate Forcing of Volcanic Eruptions for the Past 2500 Years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.C.; Robock, A.; Ammann, C. Volcanic Forcing of Climate over the Past 1500 Years: An Improved Ice Core-Based Index for Climate Models. J. Geophys. Res. Atmos. 2008, 113, D23101. [Google Scholar] [CrossRef]
- Haurwitz, M.W.; Brier, G.W. A Critique of the Superposed Epoch Analysis Method: Its Application to Solar Weather Relations. Mon. Weather Rev. 1981, 109, 2074–2079. [Google Scholar] [CrossRef]
- Rao, M.P.; Cook, E.R.; Cook, B.I.; Anchukaitis, K.J.; D’Arrigo, R.D.; Krusic, P.J.; LeGrande, A.N. A Double Bootstrap Approach to Superposed Epoch Analysis to Evaluate Response Uncertainty. Dendrochronologia 2019, 55, 119–124. [Google Scholar] [CrossRef]
- Gao, Y.J.; Gao, C.C. European Hydroclimate Response to Volcanic Eruptions over the Past Nine Centuries. Int. J. Climatol. 2017, 37, 4146–4157. [Google Scholar] [CrossRef]
- Schneider, L.; Smerdon, J.E.; Pretis, F.; Hartl-Meier, C.; Esper, J. A New Archive of Large Volcanic Events over the Past Millennium Derived from Reconstructed Summer Temperatures. Environ. Res. Lett. 2017, 12, 094002. [Google Scholar] [CrossRef]
- Trouet, V.; Babst, F.; Meko, M. Recent Enhanced High-Summer North Atlantic Jet Variability Emerges from Three-Century Context. Nat. Commun. 2018, 9, 180. [Google Scholar] [CrossRef]
- Esper, J.; Schneider, L.; Krusic, P.J.; Luterbacher, J.; Büntgen, U.; Timonen, M.; Sirocko, F.; Zorita, E. European Summer Temperature Response to Annually Dated Volcanic Eruptions over the Past Nine Centuries. Bull. Volcanol. 2013, 75, 736. [Google Scholar] [CrossRef]
- Adams, J.B.; Mann, M.E.; Ammann, C.M. Proxy Evidence for an El Niño-like Response to Volcanic Forcing. Nature 2003, 426, 274–278. [Google Scholar] [CrossRef]
- Roychowdhury, R.; DeConto, R. Interhemispheric Effect of Global Geography on Earth’s Climate Response to Orbital Forcing. Clim. Past 2019, 15, 377–388. [Google Scholar] [CrossRef]
- Pausata, F.S.R.; Zanchettin, D.; Karamperidou, C.; Caballero, R.; Battisti, D.S. ITCZ Shift and Extratropical Teleconnections Drive ENSO Response to Volcanic Eruptions. Sci. Adv. 2020, 6, eaaz5006. [Google Scholar] [CrossRef]
- Schneider, D.P.; Ammann, C.M.; Otto-Bliesner, B.L.; Kaufman, D.S. Climate Response to Large, High-Latitude and Low-Latitude Volcanic Eruptions in the Community Climate System Model. J. Geophys. Res. Atmos. 2009, 114, D19101. [Google Scholar] [CrossRef]
- Colose, C.M.; LeGrande, A.N.; Vuille, M. Hemispherically Asymmetric Volcanic Forcing of Tropical Hydroclimate During the Last Millennium. Earth Syst. Dyn. 2016, 7, 681–696. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- McGregor, S.; Timmermann, A. The Effect of Explosive Tropical Volcanism on ENSO. J. Clim. 2011, 24, 2178–2191. [Google Scholar] [CrossRef]
- Li, J.B.; Xie, S.P.; Cook, E.R.; Morales, M.S.; Christie, D.A.; Johnson, N.C.; Chen, F.; D’Arrigo, R.; Fowler, A.M.; Gou, X.; et al. El Niño Modulations over the Past Seven Centuries. Nat. Clim. Change 2013, 3, 822–826. [Google Scholar] [CrossRef]










| Classification | Volcano | Year | Location (Latitude, Longitude) | Ratio a | VEI |
|---|---|---|---|---|---|
| NH events | Novarupta | 1912 | 58.27° N, 155.16° W | ∞ | 6 |
| Santa Maria | 1902 | 14.76° N, 91.56° W | ∞ | 6 | |
| El Chichón | 1982 | 17.36° N, 93.23° W | 4 | 5 | |
| TR events | Krakatau | 1883 | 6.10° S, 105.42° E | 1.04 | 6 |
| Pinatubo | 1991 | 15.13° N, 120.35° E | 1 | 6 | |
| SH events | Kie Besi | 1861 | 0.32° N, 127.40° E | 0 | 4 |
| Agung | 1963 | 8.34° S, 115.51° E | 0.55 | 5 |
| DCPP-A (With Volcanic Forcing) | DCPP-C (Without Volcanic Forcing) | |
|---|---|---|
| TR | s1990 DCPP-A (Pinatubo) | s1990 DCPP-C (no Pinatubo) |
| NH | s1981 DCPP-A (El Chichón) | s1981 DCPP-C (no El Chichón) |
| SH | s1962 DCPP-A (Agung) | s1962 DCPP-C (no Agung) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zeng, Q.; Chen, S. Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models. Climate 2026, 14, 8. https://doi.org/10.3390/cli14010008
Zeng Q, Chen S. Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models. Climate. 2026; 14(1):8. https://doi.org/10.3390/cli14010008
Chicago/Turabian StyleZeng, Qinghong, and Shengbo Chen. 2026. "Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models" Climate 14, no. 1: 8. https://doi.org/10.3390/cli14010008
APA StyleZeng, Q., & Chen, S. (2026). Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models. Climate, 14(1), 8. https://doi.org/10.3390/cli14010008
