Reconstruction of Water Storage Variability in the Aral Sea Region
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Climate-Driven Water Storage Variability
3.2. Model Identification
3.3. Estimation of Climate and Human TWS Trends
3.4. Time Series Decomposition
3.5. Exponential Decay Filter
3.6. Analysis Based on Drought Index TSDI and SPI
4. Results
4.1. Climate-Driven and Human-Induced Contributions to Water Storage Variations in the ASB
4.2. Inter-Annual Change of TWSA
4.3. Trend of Climate-Driven and Human-Induced TWS
4.4. Determine Parameters of Terrestrial Storage Deficit Index
4.5. Temporal Drought Characteristics Based on the TDSI and SPI
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berdimbetov, T.T.; Ma, Z.-G.; Liang, C.; Ilyas, S. Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin. Hydrology 2020, 7, 30. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Kostianoy, A.; Bergé-Nguyen, M.; Kouraev, A. Present-day water balance of the Aral Sea seen from satellite. In Remote Sensing of the Asian Seas; Springer: Charm, Switzerland, 2019; pp. 523–539. [Google Scholar]
- Micklin, P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Lioubimtseva, E. Impact of Climate Change on the Aral Sea and Its Basin. In The Aral Sea; Springer: Berlin/Heidelberg, Germany, 2014; pp. 405–427. [Google Scholar]
- Li, Q.; Li, X.; Ran, Y.; Feng, M.; Nian, Y.; Tan, M.; Chen, X. Investigate the relationships between the Aral Sea shrinkage and the expansion of cropland and reservoir in its drainage basins between 2000 and 2020. Int. J. Digit. Earth 2020, 14, 661–677. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Huang, Y.; Salama, M.S.; Krol, M.S.; Su, Z.; Hoekstra, A.Y.; Zeng, Y.; Zhou, Y. Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin. Water Resour. Res. 2015, 51, 8494–8516. [Google Scholar] [CrossRef]
- Felfelani, F.; Wada, Y.; Longuevergne, L.; Pokhrel, Y.N. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. J. Hydrol. 2017, 553, 105–118. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Sun, W.; Feng, W.; Chen, J. Anthropogenic and climate-driven water depletion in Asia. Geophys. Res. Lett. 2016, 43, 9061–9069. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, W.; Humphrey, V.; Zhong, M. Human-Induced and Climate-Driven Contributions to Water Storage Variations in the Haihe River Basin, China. Remote Sens. 2019, 11, 3050. [Google Scholar] [CrossRef]
- Landerer, F.; Swenson, S. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 4531. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Muller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef]
- Cao, Y.; Nan, Z.; Cheng, G. GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China. Remote Sens. 2015, 7, 1021–1047. [Google Scholar] [CrossRef]
- Nemati, A.; Ghoreishi Najafabadi, S.H.; Joodaki, G.; Mousavi Nadoushani, S.S. Monitoring and Analysis of Drought Using Gravity Recovery and Climate Experiment (GRACE). Hydrology 2019, 6, 75. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Ma, Z.-G.; Shelton, S.; Ilyas, S.; Nietullaeva, S. Identifying Land Degradation and its Driving Factors in the Aral Sea Basin From 1982 to 2015. Front. Earth Sci. 2021, 9, 690000. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Shelton, S.; Pushpawela, B.; Rathnayake, U.; Koshim, A.G.; Yegizbayeva, A.; Nietullaeva, S. Use of intensity analysis and transfer matrix to characterize land conversion in the Aral Sea Basin under changing climate. Model. Earth Syst. Environ. 2024, 10, 4717–4729. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Gafforov, K.; Kurban, A.; De Maeyer, P. Monitoring land sensitivity to desertification in Central Asia: Convergence or divergence? Sci. Total Environ. 2019, 658, 669–683. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Li, Y.; Guo, H.; Zheng, G.; Chen, T.; De Maeyer, P. Assessing land degradation and quantifying its drivers in the Amudarya River delta. Ecol. Indic. 2019, 107, 105595. [Google Scholar] [CrossRef]
- Timur, B. Spatio-Temporal Variations of Climate Variables and Extreme Indices over the Aral Sea Basin during 1960–2017. Trends Sci. 2023, 20, 5664. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Pushpawela, B.; Murzintcev, N.; Nietullaeva, S.; Gafforov, K.; Tureniyazova, A.; Madetov, D. Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017. Climate 2024, 12, 105. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Chen, T.; Zheng, G.; Wang, Y.; Jiang, L.; De Maeyer, P. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res. 2021, 252, 105451. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J.; Milly, P.C.D. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2003, 39, 1223. [Google Scholar] [CrossRef]
- Alghafli, K.; Ali, A.M.; Shi, X.; Sloan, W.; Obeid, A.A.A.; Shamsudduha, M. Evaluation of runoff estimation from GRACE coupled with different meteorological gridded products over the Upper Blue Nile Basin. J. Hydrol. Reg. Stud. 2023, 50, 101545. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. A global reconstruction of climate-driven subdecadal water storage variability. Geophys. Res. Lett. 2017, 44, 2300–2309. [Google Scholar] [CrossRef]
- Ahmed, J.S.; Buizza, R.; Dell’Acqua, M.; Demissie, T.; Pè, M.E. Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia. Meteorol. Atmos. Phys. 2024, 136, 17. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef]
- Chib, S. Chapter 57—Markov Chain Monte Carlo Methods: Computation and Inference. In Handbook of Econometrics; Heckman, J.J., Leamer, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 5, pp. 3569–3649. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Fan, Y.; Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. 2008, 113, D01103. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Ilyas, S.; Ma, Z.; Bilal, M.; Nietullaeva, S. Climatic Change and Human Activities Link to Vegetation Dynamics in the Aral Sea Basin Using NDVI. Earth Syst. Environ. 2021, 5, 303–318. [Google Scholar] [CrossRef]
- Eckner, A. A Note on Trend and Seasonality Estimation for Unevenly Spaced Time Series. Available online: http://www.eckner.com/papers/ (accessed on 21 August 2025).
- Robert, B.C.; William, S.C.; Jean, E.M.; Irma, T. STL: A seasonal-trend decomposition procedure based on loess. J. Official Stat. 1990, 6, 3–73. [Google Scholar]
- Brent, R. Algorithms for Minimization Without Derivatives; Prentice Hall: Englewood Cliffs, FL, USA, 2002; Volume 19. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration of time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–186. [Google Scholar]
- Cheng, Y.-S.; Lu, J.-R.; Yeh, H.-F. Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan. Environments 2024, 11, 233. [Google Scholar] [CrossRef]
- Agboma, C.O.; Yirdaw, S.Z.; Snelgrove, K.R. Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments. J. Hydrol. 2009, 374, 351–359. [Google Scholar] [CrossRef]
- Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrol. 2008, 356, 84–92. [Google Scholar] [CrossRef]
- Palmer, W. Meteorological Drought; Research Paper, No. 45; Weather Bureau: Washington, DC, USA, 1965; pp. 1–65. [Google Scholar]
- Diodato, N.; De Guenni, L.B.; Garcia, M.; Bellocchi, G. Decadal Oscillation in the Predictability of Palmer Drought Severity Index in California. Climate 2019, 7, 6. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Yegizbayeva, A.; Ilyas, S.; Berdimbetov, T. Drought Characterisation of Syrdarya River Basin in Central Asia Using Reconnaissance Drought Index. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6356–6359. [Google Scholar]
- Foldvary, L.; Tureniyazova, A.; Berdimbetov, T.; Abdurahmanov, I. Relationship between climate and land cover change in Aral Sea Basin. E3S Web Conf. 2023, 386, 06003. [Google Scholar] [CrossRef]
- Philip, M.; Aladin, N.V.; Plotnikov, I. The Aral Sea. The Devastation and Partial Rehabilitation of a Great Lake; Micklin, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; p. 453. [Google Scholar]
- Becker, R.; Zmijewski, K. Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12. Earth Interact. 2014, 18, 1–16. [Google Scholar] [CrossRef]
- Robinson, S. Land Degradation in Central Asia: Evidence, Perception and Policy. In The End of Desertification? Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2016; pp. 451–490. [Google Scholar]
- Shabad, T.; Bond, A.R.; Bradshaw, M.J.; Cushman, J.F.; Harris, C.D.; Hausladen, G.J.; Lewis, R.A.; Lydolph, P.E.; Micklin, P.P.; North, R.N.; et al. Panel on the Soviet Union in the Year 2000. Sover. Geogr. 2013, 28, 388–433. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent Lake Area Changes in Central Asia. Sci. Rep. 2019, 9, 16277. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R. Uncertainties of Climate Change in Arid Environments of Central Asia. Rev. Fish. Sci. Aquac. 2007, 14, 29–49. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- CAWater-Info. Portal of Knowledge for Water and Environmental Issues in Central Asia. Available online: http://www.cawater-info.net/ (accessed on 21 August 2025).
- Aitekeyeva, N.; Li, X.; Guo, H.; Wu, W.; Shirazi, Z.; Ilyas, S.; Yegizbayeva, A.; Hategekimana, Y. Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water 2020, 12, 1738. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
Class | Coefficient C |
---|---|
Wet | 0 or more |
Near normal | 0~−0.5 |
Mild drought | −0.5~−1 |
Moderate drought | −1~−1.5 |
Severe drought | −1.5~−2 |
Extreme drought | −2~less |
Class | |
---|---|
Mild drought | −1 |
Moderate drought | −2 |
Severe drought | −3 |
Extreme drought | −4 |
Year | UASB | MASB | LASB | ||||||
---|---|---|---|---|---|---|---|---|---|
GRACE TWSA | Climate TWSA | Human TWSA | GRACE TWSA | Climate TWSA | Human TWSA | GRACE TWSA | Climate TWSA | Human TWSA | |
2002 | −3.59 | 0.16 | −3.75 | −2.23 | 0.10 | −2.33 | −3.99 | 0.52 | −4.51 |
2003 | 0.62 | 0.78 | −0.16 | −0.25 | 0.69 | −0.94 | −2.14 | 0.78 | −2.92 |
2004 | 0.95 | 0.67 | 0.27 | 0.45 | 0.68 | −0.23 | −0.12 | 0.54 | −0.65 |
2005 | 5.30 | 0.65 | 4.66 | 2.92 | 0.97 | 1.95 | 2.72 | 0.15 | 2.58 |
2006 | 1.36 | −0.43 | 1.79 | 0.40 | −0.08 | 0.48 | 1.12 | −0.16 | 1.28 |
2007 | −1.86 | −1.00 | −0.86 | −0.14 | −0.19 | 0.05 | 1.37 | −0.19 | 1.56 |
2008 | −6.29 | −2.04 | −4.25 | −2.12 | −0.88 | −1.25 | −0.60 | −0.90 | 0.30 |
2009 | −2.27 | −0.62 | −1.64 | −0.54 | −0.01 | −0.53 | −0.29 | −0.38 | 0.09 |
2010 | 4.15 | 1.36 | 2.79 | 1.21 | 0.20 | 1.02 | 1.10 | −0.11 | 1.20 |
2011 | 0.75 | −0.28 | 1.03 | −0.73 | −0.62 | −0.11 | −0.92 | −0.68 | −0.24 |
2012 | 2.59 | −0.03 | 2.62 | 0.82 | −0.21 | 1.02 | −0.32 | −0.54 | 0.22 |
2013 | −1.62 | −0.90 | −0.72 | −0.48 | −0.29 | −0.19 | −0.32 | −0.50 | 0.18 |
2014 | −2.88 | −1.38 | −1.50 | −0.94 | −0.75 | −0.19 | −0.59 | −0.60 | 0.01 |
2015 | 0.08 | −0.54 | 0.62 | 0.61 | −0.18 | 0.79 | −0.13 | −0.04 | −0.09 |
2016 | −0.01 | 0.41 | −0.42 | 0.21 | −0.13 | 0.34 | 1.12 | 1.04 | 0.08 |
2017 | 2.01 | 1.11 | 0.90 | 0.73 | 0.03 | 0.70 | 0.83 | 0.40 | 0.43 |
Year | UASB | MASB | LASB | ||||||
---|---|---|---|---|---|---|---|---|---|
GRACE TWF | Climate TWF | Human TWF | GRACE TWF | Climate TWF | Human TWF | GRACE TWF | Climate TWF | Human TWF | |
2002 | −3.59 | 0.16 | −3.75 | −2.23 | 0.10 | −2.33 | −3.99 | 0.52 | −4.51 |
2003 | 4.21 | 0.61 | 3.59 | 1.98 | 0.59 | 1.39 | 1.85 | 0.26 | 1.59 |
2004 | 0.33 | −0.10 | 0.43 | 0.71 | −0.01 | 0.72 | 2.03 | −0.24 | 2.26 |
2005 | 4.36 | −0.03 | 4.39 | 2.47 | 0.29 | 2.18 | 2.84 | −0.39 | 3.23 |
2006 | −3.94 | −1.07 | −2.87 | −2.53 | −1.05 | −1.47 | −1.61 | −0.31 | −1.30 |
2007 | −3.22 | −0.57 | −2.65 | −0.53 | −0.10 | −0.43 | 0.26 | −0.03 | 0.28 |
2008 | −4.43 | −1.04 | −3.41 | −1.98 | −0.69 | −1.29 | −1.97 | −0.72 | −1.25 |
2009 | 4.02 | 1.41 | 2.61 | 1.58 | 0.86 | 0.72 | 0.32 | 0.52 | −0.21 |
2010 | 6.42 | 1.99 | 4.43 | 1.75 | 0.21 | 1.55 | 1.38 | 0.27 | 1.11 |
2011 | −3.40 | −1.65 | −1.76 | −1.94 | −0.82 | −1.12 | −2.02 | −0.57 | −1.45 |
2012 | 1.84 | 0.25 | 1.59 | 1.55 | 0.42 | 1.13 | 0.60 | 0.14 | 0.46 |
2013 | −4.21 | −0.87 | −3.34 | −1.30 | −0.08 | −1.22 | 0.00 | 0.04 | −0.04 |
2014 | −1.26 | −0.48 | −0.78 | −0.45 | −0.46 | 0.00 | −0.27 | −0.09 | −0.18 |
2015 | 2.96 | 0.84 | 2.12 | 1.54 | 0.57 | 0.97 | 0.46 | 0.56 | −0.10 |
2016 | −0.10 | 0.95 | −1.05 | −0.40 | 0.04 | −0.44 | 1.25 | 1.08 | 0.17 |
2017 | 2.03 | 0.70 | 1.32 | 0.52 | 0.16 | 0.36 | −0.29 | −0.64 | 0.35 |
Class | Coefficient |
---|---|
Wet | 1~more |
Near normal | −1~1 |
Mild drought | −2~−1 |
Moderate drought | −3~−2 |
Severe drought | −4~−3 |
Extreme drought | −4~less |
Region | Time | Drought Duration in Months | Min TDSI | Mean TDSI | Min SPI | Mean SPI | Slope of the Ccumulative TSDI |
---|---|---|---|---|---|---|---|
UASB | 2002-05 to 2003-02 | 12 | −3.16 | −1.71 | −1.63 | 0.11 | −1.95 |
2007-05 to 2009-06 | 26 | −4.78 | −2.49 | −2.54 | −0.17 | −2.85 | |
2011-04 to 2011-08 | 5 | −1.22 | −0.58 | −2.41 | −0.75 | −0.67 | |
2013-02 to 2014-10 | 21 | −3.29 | −1.49 | −1.46 | 0.07 | −1.57 | |
MASB | 2002-05 to 2003-04 | 12 | −4.34 | −1.96 | −1.99 | 0.14 | −2.33 |
2006-06 to 2006-10 | 5 | −0.68 | −0.43 | −1.26 | −0.13 | −0.53 | |
2007-09 to 2009-06 | 22 | −3.48 | −1.85 | −1.01 | −0.02 | −2.22 | |
2011-02 to 2011-10 | 9 | −2.22 | −1.28 | −2.23 | −0.41 | −1.55 | |
2013-01 to 2014-09 | 11 | −2.27 | −1.56 | −1.68 | −0.11 | −1.58 | |
LASB | 2002-05 to 2003-11 | 19 | −5.16 | −2.99 | −1.92 | −0.16 | −3.26 |
2004-05 to 2004-08 | 4 | −1.54 | −0.51 | −1.51 | 0.76 | −0.52 | |
2006-08 to 2006-09 | 3 | −0.51 | −0.46 | −1.03 | −0.87 | −0.01 | |
2008-09 to 2009-08 | 12 | −1.31 | −0.92 | −1.71 | −0.13 | −0.98 | |
2011-02 to 2011-11 | 10 | −1.86 | −1.14 | −1.84 | −0.31 | −1.31 | |
2013-02 to 2013-08 | 7 | −1.22 | −0.64 | −1.41 | −0.19 | −0.61 | |
2014-04 to 2014-09 | 6 | −2.12 | −1.48 | −1.24 | 0.23 | −0.25 | |
2015-02 to 2015-07 | 6 | −1.62 | −0.96 | −1.59 | −0.13 | −1.01 |
Month | UASB | MASB | LASB | |||
---|---|---|---|---|---|---|
Climate TWS | Human TWS | Climate TWS | Human TWS | Climate TWS | Human TWS | |
January | 0.26 | 0.21 | 0.23 | 0.32 | 0.18 | 0.25 |
February | 0.21 | 0.40 | 0.22 | 0.19 | 0.11 | 0.18 |
March | 0.17 | 0.21 | 0.13 | 0.12 | −0.10 | 0.12 |
April | 0.23 | 0.11 | 0.16 | 0.17 | −0.11 | 0.21 |
May | −0.07 | −0.04 | −0.40 | −0.05 | 0.14 | −0.49 |
June | −0.11 | −0.13 | −0.70 | −0.14 | 0.13 | −0.35 |
July | −0.20 | −0.18 | −0.72 | −0.18 | −0.32 | −0.27 |
August | −0.22 | 0.07 | −0.71 | −0.18 | −0.38 | −0.34 |
September | −0.21 | 0.46 | −0.66 | 0.21 | −0.36 | 0.24 |
October | −0.20 | 0.86 | −0.24 | 0.39 | −0.48 | 0.28 |
November | 0.19 | 0.50 | 0.16 | 0.18 | −0.15 | 0.13 |
December | 0.12 | 0.89 | 0.25 | 0.44 | 0.25 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murzintcev, N.; Nietullaeva, S.; Berdimbetov, T.; Pushpawela, B.; Tureniyazova, A.; Shelton, S.; Aytmuratov, B.; Gafforov, K.; Parakhatov, K.; Erdashov, A.; et al. Reconstruction of Water Storage Variability in the Aral Sea Region. Climate 2025, 13, 182. https://doi.org/10.3390/cli13090182
Murzintcev N, Nietullaeva S, Berdimbetov T, Pushpawela B, Tureniyazova A, Shelton S, Aytmuratov B, Gafforov K, Parakhatov K, Erdashov A, et al. Reconstruction of Water Storage Variability in the Aral Sea Region. Climate. 2025; 13(9):182. https://doi.org/10.3390/cli13090182
Chicago/Turabian StyleMurzintcev, Nikita, Sahibjamal Nietullaeva, Timur Berdimbetov, Buddhi Pushpawela, Asiya Tureniyazova, Sherly Shelton, Bakbergen Aytmuratov, Khusen Gafforov, Kanat Parakhatov, Alimjan Erdashov, and et al. 2025. "Reconstruction of Water Storage Variability in the Aral Sea Region" Climate 13, no. 9: 182. https://doi.org/10.3390/cli13090182
APA StyleMurzintcev, N., Nietullaeva, S., Berdimbetov, T., Pushpawela, B., Tureniyazova, A., Shelton, S., Aytmuratov, B., Gafforov, K., Parakhatov, K., Erdashov, A., Makhamatdinov, A.-A., & Allamuratov, T. (2025). Reconstruction of Water Storage Variability in the Aral Sea Region. Climate, 13(9), 182. https://doi.org/10.3390/cli13090182