Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies
Abstract
1. Introduction
2. Methodology
3. General Overview of Climate Change in Bangladesh
4. Impacts of Climate Change on Fisheries and Aquaculture
4.1. Impacts on Capture Fisheries
4.1.1. Impacts on Fish Habitats
4.1.2. Reduced Fish Biodiversity
4.1.3. Fish Migration
4.1.4. Water Quality and Productivity
4.1.5. Breeding Ground
4.1.6. Hatching Eggs and Larval Development
4.1.7. Growth and Yield
4.2. Impacts on Aquaculture
4.2.1. Disease Outbreak
4.2.2. Impacts on Reproductive Seasonality
4.2.3. Impacts on Hatching and Larval Development
4.3. Impacts on Coastal Aquaculture
5. Mitigation and Adaptation to Climate Change for Capture Fisheries and Aquaculture
5.1. Mitigation and Adaptation in Capture Fisheries
5.1.1. Identifying and Protecting the Valuable Areas
5.1.2. Build Socioeconomic Resilience
5.1.3. Implementation of Best Practices in Fisheries Management
5.1.4. Nature-Based Adaptation Strategies
5.1.5. Geospatial Issues to Deal with Climate Change
5.2. Mitigation and Adaptation in Aquaculture
5.2.1. Technological and Biological Intervention
5.2.2. Infrastructure Modification
5.2.3. Resource Conservation and Diversification
6. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hulme, M. Cosmopolitan Climates. Theory Cult. Soc. 2010, 27, 267–276. [Google Scholar] [CrossRef]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mulugetta, Y.; Perez, R.; et al. Framing and Context. In Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018; pp. 49–92. [Google Scholar]
- Rahman, M.C.; Rahaman, M.S.; Biswas, J.C.; Rahman, N.M.F.; Islam, M.A.; Sarkar, M.A.R.; Islam, M.S.; Maniruzzaman, M. Climate Change and Risk Scenario in Bangladesh. Asia Pac. J. Reg. Sci. 2023, 7, 381–404. [Google Scholar] [CrossRef]
- Higano, Y.; Otsuka, A. Special Feature on Regional Sustainability: Analysis in a Spatial and Regional Context with Broad Perspectives on the Risk of Global Warming, Natural Disasters, and Emerging Issues Due to the Globalized Economy. Asia Pac. J. Reg. Sci. 2022, 6, 239–245. [Google Scholar] [CrossRef]
- Vo, H.H.; Mizunoya, T.; Nguyen, C.D. Determinants of Farmers’ Adaptation Decisions to Climate Change in the Central Coastal Region of Vietnam. Asia Pac. J. Reg. Sci. 2021, 5, 327–349. [Google Scholar] [CrossRef]
- Planning Commission, Ministry of Planning; Asian Development Bank. Bangladesh Climate and Disaster Risk Atlas: Hazards—Volume I; The Asian Development Bank (ADB): Dhaka, Bangladesh; Manila, Philippines, 2021.
- BBS (Bangladesh Bureau of Statistics). Bangladesh Disaster-Related Statistics 2015: Climate Change and Natural Disaster Perspectives; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2016.
- Haque, M.M.; Bremer, S.; Aziz, S.B.; van der Sluijs, J.P. A Critical Assessment of Knowledge Quality for Climate Adaptation in Sylhet Division, Bangladesh. Clim. Risk Manag. 2017, 16, 43–58. [Google Scholar] [CrossRef]
- Hossain, M.M.; Ali, M.S. Climate Change Adaptation Initiatives in Bangladesh: Navigating Towards Resilience and Sustainability. In International Law, Climate Change and Bangladesh; Springer Nature: Cham, Switzerland, 2024; pp. 45–69. [Google Scholar]
- Department of Fisheries (DoF). Yearbook of Fisheries Statistics of Bangladesh, 2022–23; Fisheries Resources Survey System (FRSS), Department of Fisheries: Dhaka, Bangladesh, 2023.
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; Food and Agriculture Organization: Rome, Italy, 2024. [Google Scholar]
- Siddique, M.A.B.; Ahammad, A.K.S.; Bashar, A.; Hasan, N.A.; Mahalder, B.; Alam, M.M.; Biswas, J.C.; Haque, M.M. Impacts of Climate Change on Fish Hatchery Productivity in Bangladesh: A Critical Review. Heliyon 2022, 8, e11951. [Google Scholar] [CrossRef]
- International Fund for Agricultural Development (IFAD). Guidelines for Integrating Climate Change Adaptation into Fisheries and Aquaculture Projects; International Fund for Agricultural Development: Rome, Italy, 2014. [Google Scholar]
- Hasan, S.J.; Haque, M.M.; Aktaruzzaman, M.; Kabir, M.M.N.A.; Aziz, M.S.B. Relationship Between Marine Fish Production and Climatic and Oceanographic Factors: Evidence from the Bay of Bengal, Bangladesh. Aquac. Fish Fish. 2025, 5, e70049. [Google Scholar] [CrossRef]
- Aziz, M.S.B.; Hasan, N.A.; Mondol, M.M.R.; Alam, M.M.; Haque, M.M. Decline in Fish Species Diversity Due to Climatic and Anthropogenic Factors in Hakaluki Haor, an Ecologically Critical Wetland in Northeast Bangladesh. Heliyon 2021, 7, e05861. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Sakib, M.H.; Islam, M.L.; Brown, C.L.; Islam, M.S.; Mahmud, Y. Coastal Aquaculture in Bangladesh: Sundarbans’s Role against Climate Change. Mar. Pollut. Bull. 2023, 194, 115431. [Google Scholar] [CrossRef]
- Jesson, J.; Lacey, F. How to Do (or Not to Do) a Critical Literature Review. Pharm. Educ. 2006, 6, 139–148. [Google Scholar] [CrossRef]
- Faruque, M.H.; Kabir, M.A. Climate Change Effects on Aquaculture: A Case Study from North Western Bangladesh. Int. J. Fish. Aquat. Stud. 2016, 4, 550–556. [Google Scholar]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000 to 2019; Germanwatch e.V.: Bonn, Germany, 2021. [Google Scholar]
- Notre Dame Global Adaptation Initiative (ND-GAIN). ND-GAIN Country Index; Notre Dame Global Adaptation Initiative: South Bend, IN, USA, 2023. [Google Scholar]
- Ahmed, N.; Diana, J.S. Does Climate Change Matter for Freshwater Aquaculture in Bangladesh? Reg. Environ. Change 2016, 16, 1659–1669. [Google Scholar] [CrossRef]
- Alam, S.M.A.; Sarkar, M.S.I.; Miah, M.M.A.; Rashid, H. Management Strategies for Nile Tilapia (Oreochromis niloticus) Hatchery in the Face of Climate Change Induced Rising Temperature. Aquac. Stud. 2021, 21, 55–62. [Google Scholar] [CrossRef]
- Ministry of Defence; Government of the People’s Republic of Bangladesh. Monthly Climatological Data (1991–2023); Ministry of Defence: Dhaka, Bangladesh, 2023.
- Jihan, M.A.T.; Popy, S.; Kayes, S.; Rasul, G.; Maowa, A.S.; Rahman, M.M. Climate Change Scenario in Bangladesh: Historical Data Analysis and Future Projection Based on CMIP6 Model. Sci. Rep. 2025, 15, 7856. [Google Scholar] [CrossRef] [PubMed]
- Mamoon, W.B.; Jahan, N.; Abdullah, F.; Rahman, A. Modeling the Impact of Climate Change on Streamflow in the Meghna River Basin: An Analysis Using SWAT and CMIP6 Scenarios. Water 2024, 16, 1117. [Google Scholar] [CrossRef]
- Abdullah, F.; Mamoon, W.B.; Islam, A.S.; Islam, G.T.; Bala, S.K.; Kaiser, S.; Mohammed, K.; Billah, M.; Das, M.K. Hydrological Responses of the Brahmaputra River Basin Using CMIP6 GCM Projections for Supporting Climate Resilient Infrastructure Design. Sustain. Resilient Infrastruct. 2025, 10, 75–101. [Google Scholar] [CrossRef]
- Gädeke, A.; Wortmann, M.; Menz, C.; Islam, A.S.; Masood, M.; Krysanova, V.; Lange, S.; Hattermann, F.F. Climate Impact Emergence and Flood Peak Synchronization Projections in the Ganges, Brahmaputra and Meghna Basins under CMIP5 and CMIP6 Scenarios. Environ. Res. Lett. 2022, 17, 094036. [Google Scholar] [CrossRef]
- Basher, A.; Islam, A.K.M.S.; Stiller-Reeve, M.A.; Chu, P. Changes in Future Rainfall Extremes over Northeast Bangladesh: A Bayesian Model Averaging Approach. Int. J. Climatol. 2020, 40, 3232–3249. [Google Scholar] [CrossRef]
- Naskar, P.R.; Singh, G.P.; Pattanaik, D.R. CMIP6 Projected Sea Surface Temperature over the North Indian Ocean. J. Earth Syst. Sci. 2024, 133, 220. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal (2025); World Bank: Washington, DC, USA, 2025. [Google Scholar]
- Chowdhury, M.T.H.; Sukhan, Z.P.; Hannan, M.A. Climate Change and Its Impact on Fisheries Resource in Bangladesh. In Proceedings of the International Conference on Environmental Aspects of Bangladesh (ICEAB10), Kitakyushu, Japan, 4 September 2010. [Google Scholar]
- Davis, K.F.; Bhattachan, A.; D’Odorico, P.; Suweis, S. A Universal Model for Predicting Human Migration under Climate Change: Examining Future Sea Level Rise in Bangladesh. Environ. Res. Lett. 2018, 13, 064030. [Google Scholar] [CrossRef]
- Dasgupta, S.; Huq, M.; Mustafa, M.G.; Sobhan, M.I.; Wheeler, D. The Impact of Aquatic Salinization on Fish Habitats and Poor Communities in a Changing Climate: Evidence from Southwest Coastal Bangladesh. Ecol. Econ. 2017, 139, 128–139. [Google Scholar] [CrossRef]
- Soil Resources Development Institute (SRDI). Saline Soils of Bangladesh, SRMAF Project; Soil Resources Development Institute: Dhaka, Bangladesh, 2010. [Google Scholar]
- Dastagir, M.R. Modeling Recent Climate Change Induced Extreme Events in Bangladesh: A Review. Weather Clim. Extrem. 2015, 7, 49–60. [Google Scholar] [CrossRef]
- Islam, M.M.; Barman, A.; Kundu, G.K.; Kabir, M.A.; Paul, B. Vulnerability of Inland and Coastal Aquaculture to Climate Change: Evidence from a Developing Country. Aquac. Fish. 2019, 4, 183–189. [Google Scholar] [CrossRef]
- Sunny, B.K.; Prapti, D.R. A Systematic Study of Climate Change Impact on Fish and Fisheries Sector in Bangladesh and Role of Geospatial Science in Mitigation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1064, 012036. [Google Scholar] [CrossRef]
- Islam, A.; Hasan, M.; Ferdous, N.; Hossain, R. Massive Damage to Coastal Region of Bangladesh by the Cyclone Storm YASS. J. Disaster Emerg. Res. 2021, 4, 111–117. [Google Scholar] [CrossRef]
- Islam, M.M.; Nipa, T.A.; Islam, M.S.; Hasan, M.; Khan, M.I. Economic and Non-Economic Loss and Damage to Climate Change: Evidence from a Developing Country Shrimp Farms to Cyclone Bulbul. Fish. Aquat. Sci. 2022, 25, 214–230. [Google Scholar] [CrossRef]
- Dhaka Tribune. Cyclone Remal Causes Losses of over 900C in Fisheries and Livestock Sectors; Dhaka Tribune: Dhaka, Bangladesh, 2024. [Google Scholar]
- The Financial Express. Amphan Havoc—Rescuing Fisheries and Livestock; The Financial Express: Noida, India, 2020. [Google Scholar]
- Islam, M.N.; van Amstel, A. Bangladesh II: Climate Change Impacts, Mitigation and Adaptation in Developing Countries; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-71948-7. [Google Scholar]
- Shahid, S.B.; Gani, M.R.; Gani, N.D. 32 Years of Changes in River Paths and Coastal Landscape in Bangladesh, Bengal Basin. J. Sediment. Environ. 2024, 9, 1035–1053. [Google Scholar] [CrossRef]
- Sultana, M.A.; Pandit, D.; Barman, S.K.; Tikadar, K.K.; Tasnim, N.; Fagun, I.A.; Hussain, M.A.; Kunda, M. A Review of Fish Diversity, Decline Drivers, and Management of the Tanguar Haor Ecosystem: A Globally Recognized Ramsar Site in Bangladesh. Heliyon 2022, 8, e11875. [Google Scholar] [CrossRef]
- Alam, A.B.M.S.; Badhon, M.K.; Sarker, M.W. Biodiversity of Tanguar Haor: A Ramsar Site of Bangladesh Volume III: Fish; International Union for Conservation of Nature: Dhaka, Bangladesh, 2015. [Google Scholar]
- Islam, S.M.D.-U.; Bhuiyan, M.A.H. Sundarbans Mangrove Forest of Bangladesh: Causes of Degradation and Sustainable Management Options. Environ. Sustain. 2018, 1, 113–131. [Google Scholar] [CrossRef]
- Akhter, J.N.; Rahman, M.K. Impacts of climate change on fish and aquatic resources of Bangladesh. In National Fish Week Compendium; Department of Fisheries, Ministry of Fisheries and Livestock: Dhaka, Bangladesh, 2016; pp. 120–123. (In Bengali) [Google Scholar]
- Deshwara, M. Fish Dying at Hakaluki Haor after Flood. The Daily Star, 17 April 2017. Available online: https://www.thedailystar.net/country/fishes-dying-hakaluki-haor-after-flood-1392235 (accessed on 25 August 2025).
- Haque, M.M. Fisheries and Aquaculture in Seasonal Bangladesh: Implications of Climate Change; Bangladesh Agricultural University: Mymensingh, Bangladesh, 2009. [Google Scholar]
- Aziz, M.S.B.; Alam, M.M.; Haque, M.M.; Mondol, M.M.R. Reduction of fish production in Hakaluki Haor caused by climatic and anthropogenic factors. J. Bio-Sci. 2022, 30, 23–37. [Google Scholar] [CrossRef]
- Roy, N.C.; Sen, R.C.; Chowdhury, M.A. Consequences of Climate Change on Fish Diversity in Dekhar Haor Bangladesh. Int. J. Fish. Aquat. Stud. 2019, 7, 118–124. [Google Scholar]
- Akther, K.R.; Hossain, M.A.; Al Asek, A.; Kibria, M.M.; Roy, N.C. Environmental and Human Factors Affecting Indian Major Carps’ Spawning in Halda River, Bangladesh. Arch. Agric. Environ. Sci. 2024, 9, 812–819. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Ahammad, A.K.S. Impact of Climatic Factors on Water Quality Parameters in Tilapia Broodfish Ponds and Predictive Modeling of Pond Water Temperature with ARIMAX. Heliyon 2024, 10, e37717. [Google Scholar] [CrossRef]
- Mahalder, B.; Mahmud, M.N.; Basori, M.R.; Seba, M.I.J.; Shammi, M.A.B.H.; Siddique, M.A.B.; Ahammad, A.K.S.; Haque, M.M. Climate-Resilient Aquaculture: Recirculatory Aquaculture Systems–Based Seed Production for Heteropneustes fossilis in Bangladesh. Aquac. Fish Fish. 2025, 5, e70066. [Google Scholar] [CrossRef]
- Shohidullah Miah, M. Climatic and Anthropogenic Factors Changing Spawning Pattern and Production Zone of Hilsa Fishery in the Bay of Bengal. Weather Clim. Extrem. 2015, 7, 109–115. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals.; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Pankhurst, N.W.; Munday, P.L. Effects of Climate Change on Fish Reproduction and Early Life History Stages. Mar. Freshw. Res. 2011, 62, 1015. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Sajib, K.I.; Alam, I. A Study on Climate Change Impact on the Livelihoods of the People in Tanguar Haor. J. Water Resour. Eng. Manag. 2016, 3, 1–9. [Google Scholar]
- Rouf, M.; Uddin, M.; Debsarma, S.; Rahman, M.M. Climate of Bangladesh: An Analysis of Northwestern and Southwestern Part Using High Resolution Atmosphere-Ocean General Circulation Model (AOGCM). Agriculturists 1970, 9, 143–154. [Google Scholar] [CrossRef]
- Wu, R.S.S. Chapter 3 Effects of Hypoxia on Fish Reproduction and Development. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2009; pp. 79–141. [Google Scholar]
- Ahmed, A.U. Bangladesh Climate Change Impacts and Vulnerability; Bangladesh’s Department of Environment: Dhaka, Bangladesh, 2006. [Google Scholar]
- Ahne, W.; Bjorklund, H.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J. Spring Viremia of Carp (SVC). Dis. Aquat. Organ. 2002, 52, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Perelberg, A.; Ilouze, M.; Kotler, M.; Steinitz, M. Antibody Response and Resistance of Cyprinus Carpio Immunized with Cyprinid Herpes Virus 3 (CyHV-3). Vaccine 2008, 26, 3750–3756. [Google Scholar] [CrossRef]
- Macnab, V.; Barber, I. Some (Worms) like It Hot: Fish Parasites Grow Faster in Warmer Water, and Alter Host Thermal Preferences. Glob. Chang. Biol. 2012, 18, 1540–1548. [Google Scholar] [CrossRef]
- Blanco, A.M.; Unniappan, S. Goldfish (Carassius auratus): Biology, Husbandry, and Research Applications. In Laboratory Fish in Biomedical Research; Elsevier: Amsterdam, The Netherlands, 2022; pp. 373–408. [Google Scholar]
- Ahmed, N.; Diana, J.S. Threatening “White Gold”: Impacts of Climate Change on Shrimp Farming in Coastal Bangladesh. Ocean Coast. Manag. 2015, 114, 42–52. [Google Scholar] [CrossRef]
- Heal, R.D.; Hasan, N.A.; Haque, M.M. Increasing Disease Burden and Use of Drugs and Chemicals in Bangladesh Shrimp Aquaculture: A Potential Menace to Human Health. Mar. Pollut. Bull. 2021, 172, 112796. [Google Scholar] [CrossRef]
- Islam, S.; Hossain, P.R.; Braun, M.; Amjath-Babu, T.S.; Mohammed, E.Y.; Krupnik, T.J.; Chowdhury, A.H.; Thomas, M.; Mauerman, M. Economic Valuation of Climate Induced Losses to Aquaculture for Evaluating Climate Information Services in Bangladesh. Clim. Risk Manag. 2024, 43, 100582. [Google Scholar] [CrossRef]
- Subhani, R.; Saqib, S.E.; Rahman, M.A.; Ahmad, M.M.; Pradit, S. Impact of Cyclone Yaas 2021 Aggravated by COVID-19 Pandemic in the Southwest Coastal Zone of Bangladesh. Sustainability 2021, 13, 13324. [Google Scholar] [CrossRef]
- Arafeen, M.S.; Owaresat, J.K.; Islam, M.R.; Foysal, E.; Siam, M.A.H.; Al Asek, A.; Suhag, B.; Mumtahena; Kibria, M.M. Identifying the Most Productive Hatching Environment for Carp Fish Fry at the Halda River, Bangladesh. Bangladesh J. Zool. 2025, 52, 197–207. [Google Scholar] [CrossRef]
- Vass, K.K.; Das, M.K.; Srivastava, P.K.; Dey, S. Assessing the Impact of Climate Change on Inland Fisheries in River Ganga and Its Plains in India. Aquat. Ecosyst. Health Manag. 2009, 12, 138–151. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Ahammad, A.K.S. Forecasting Air Temperature and Rainfall in Mymensingh, Bangladesh with ARIMA: Implications for Aquaculture Management. Egypt. J. Aquat. Res. 2025, 51, 294–303. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Ahammad, A.K.S. Impact of Climatic and Water Quality Parameters on Tilapia (Oreochromis niloticus) Broodfish Growth: Integrating ARIMA and ARIMAX for Precise Modeling and Forecasting. PLoS ONE 2025, 20, e0313846. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, S.K.; De, M.; Mazlan, A.G.; Zaidi, C.C.; Rahim, S.M.; Simon, K.D. Impact of Global Climate Change on Fish Growth, Digestion and Physiological Status: Developing a Hypothesis for Cause and Effect Relationships. J. Water Clim. Change 2015, 6, 200–226. [Google Scholar] [CrossRef]
- Ahammad, A.K.S.; Asaduzzaman, M.; Uddin Ahmed, M.B.; Akter, S.; Islam, M.S.; Haque, M.M.; Ceylan, H.; Wong, L.L. Muscle Cellularity, Growth Performance and Growth-Related Gene Expression of Juvenile Climbing Perch Anabas testudineus in Response to Different Eggs Incubation Temperature. J. Therm. Biol. 2021, 96, 102830. [Google Scholar] [CrossRef]
- Biswas, J.C.; Maniruzzaman, M.; Haque, M.M.; Hossain, M.B.; Rahman, M.M.; Naher, U.A.; Ali, M.H.; Kabir, W. Extreme Climate Events and Fish Production in Bangladesh. Environ. Nat. Resour. Res. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Bernard, A.; Long, N.; Becker, M.; Khan, J.; Fanchette, S. Bangladesh’s Vulnerability to Cyclonic Coastal Flooding. Nat. Hazards Earth Syst. Sci. 2022, 22, 729–751. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- Islam, S.N.; Reinstädtler, S.; Ferdaush, J. Challenges of Climate Change Impacts on Urban Water Quality Management and Planning in Coastal Towns of Bangladesh. Int. J. Environ. Sustain. Dev. 2017, 16, 228. [Google Scholar] [CrossRef]
- Ahsan, D.; Brandt, U.S. Climate Change and Coastal Aquaculture Farmers’ Risk Perceptions: Experiences from Bangladesh and Denmark. J. Environ. Plan. Manag. 2015, 58, 1649–1665. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The Impacts of Climate Change in Coastal Marine Systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef]
- Islam, M.A.; Akber, M.A.; Ahmed, M.; Rahman, M.M.; Rahman, M.R. Climate Change Adaptations of Shrimp Farmers: A Case Study from Southwest Coastal Bangladesh. Clim. Dev. 2019, 11, 459–468. [Google Scholar] [CrossRef]
- Jutla, A.S.; Akanda, A.S.; Griffiths, J.K.; Colwell, R.; Islam, S. Warming Oceans, Phytoplankton, and River Discharge: Implications for Cholera Outbreaks. Am. Soc. Trop. Med. Hyg. 2011, 85, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Anwar, M.T. Review Assessment of Biodiversity Loss and Ecosystem Deterioration Due to Built-Form Considering the Implementation of Rampal Power Plant near Sundarban Forest. Int. J. Res. Innov. Soc. Sci. 2021, 5, 247–255. [Google Scholar] [CrossRef]
- Sarker, A.H.M.R.; Nobi, M.N.; Roskaft, E.; Chivers, D.J.; Suza, M. Value of the Storm-Protection Function of Sundarban Mangroves in Bangladesh. J. Sustain. Dev. 2020, 13, 128. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal Aquaculture, Mangrove Deforestation and Blue Carbon Emissions: Is REDD+ a Solution? Mar. Policy 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Grech, A.; Edgar, G.J.; Fairweather, P.; Pressey, R.L.; Ward, T.J. Australian Marine Protected Areas. In Austral Ark; Cambridge University Press: Cambridge, UK, 2014; pp. 582–599. [Google Scholar]
- Maliao, R.J.; Pomeroy, R.S.; Turingan, R.G. Performance of Community-Based Coastal Resource Management (CBCRM) Programs in the Philippines: A Meta-Analysis. Mar. Policy 2009, 33, 818–825. [Google Scholar] [CrossRef]
- Azril Mohamed Shaffril, H.; Abu Samah, B.; Lawrence D’Silva, J.; Yassin, S.M. The Process of Social Adaptation towards Climate Change among Malaysian Fishermen. Int. J. Clim. Chang. Strateg. Manag. 2013, 5, 38–53. [Google Scholar] [CrossRef]
- Department of Animal Husbandry (DAH), Department of Fisheries (DF). Handbook of Fisheries Statistics of India 2014; Department of Fisheries: New Delhi, India, 2014.
- Bennett, N.J.; Dearden, P.; Murray, G.; Kadfak, A. The Capacity to Adapt?: Communities in a Changing Climate, Environment, and Economy on the Northern Andaman Coast of Thailand. Ecol. Soc. 2014, 19, art5. [Google Scholar] [CrossRef]
- Cinner, J.E.; Adger, W.N.; Allison, E.H.; Barnes, M.L.; Brown, K.; Cohen, P.J.; Gelcich, S.; Hicks, C.C.; Hughes, T.P.; Lau, J.; et al. Building Adaptive Capacity to Climate Change in Tropical Coastal Communities. Nat. Clim. Chang. 2018, 8, 117–123. [Google Scholar] [CrossRef]
- Fedele, G.; Donatti, C.I.; Harvey, C.A.; Hannah, L.; Hole, D.G. Transformative Adaptation to Climate Change for Sustainable Social-Ecological Systems. Environ. Sci. Policy 2019, 101, 116–125. [Google Scholar] [CrossRef]
- Gutiérrez, N.L.; Hilborn, R.; Defeo, O. Leadership, Social Capital and Incentives Promote Successful Fisheries. Nature 2011, 470, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Thorson, J.T.; Pinsky, M.L.; Oken, K.L.; Wiedenmann, J.; Jensen, O.P. Impacts of Historical Warming on Marine Fisheries Production. Science 2019, 363, 979–983. [Google Scholar] [CrossRef]
- Free, C.M.; Mangin, T.; Molinos, J.G.; Ojea, E.; Burden, M.; Costello, C.; Gaines, S.D. Realistic Fisheries Management Reforms Could Mitigate the Impacts of Climate Change in Most Countries. PLoS ONE 2020, 15, e0224347. [Google Scholar] [CrossRef]
- Miller, T.J.; Jones, C.M.; Hanson, C.; Heppell, S.; Jensen, O.P.; Livingston, P.; Lorenzen, K.; Mills, K.; Patterson, W.; Sullivan, P.; et al. Scientific Considerations Informing Magnuson–Stevens Fishery Conservation and Management Act Reauthorization. Fisheries 2018, 43, 533–541. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Status of Stocks 2017: Annual Report to Congress on the Status of U.S. Fisheries; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2017.
- Melnychuk, M.C.; Peterson, E.; Elliott, M.; Hilborn, R. Fisheries Management Impacts on Target Species Status. Proc. Natl. Acad. Sci. USA 2017, 114, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-Based Solutions as a Tool in the New Circular Economic Model for Climate Change Adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Karimi, Z.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shirvany, A.; Schwarz, M.; Hales, T.C. Vegetation-Induced Soil Stabilization in Coastal Area: An Example from a Natural Mangrove Forest. Catena 2022, 216, 106410. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Kelty, K.; Tomiczek, T.; Cox, D.T.; Lomonaco, P.; Mitchell, W. Prototype-Scale Physical Model of Wave Attenuation Through a Mangrove Forest of Moderate Cross-Shore Thickness: LiDAR-Based Characterization and Reynolds Scaling for Engineering with Nature. Front. Mar. Sci. 2022, 8, 780946. [Google Scholar] [CrossRef]
- Quang Bao, T. Effect of Mangrove Forest Structures on Wave Attenuation in Coastal Vietnam. Oceanologia 2011, 53, 807–818. [Google Scholar] [CrossRef]
- Montgomery, J.M.; Bryan, K.R.; Mullarney, J.C.; Horstman, E.M. Attenuation of Storm Surges by Coastal Mangroves. Geophys. Res. Lett. 2019, 46, 2680–2689. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Shit, P.K.; Adhikary, P.P.; Sengupta, D.; Saha, S. Significant Reduction of Carbon Stocks and Changes of Ecosystem Service Valuation of Indian Sundarban. Sci. Rep. 2022, 12, 7809. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Hossain, M. Exploring Soil Carbon and Nutrient Profiles in the Sundarbans Mangrove Forest of Bangladesh. Ecol. Conserv. Sci. Open Access 2025, 4, 555645. [Google Scholar] [CrossRef]
- Rahman, M.; Nabiul Islam Khan, M.; Fazlul Hoque, A.K.; Ahmed, I. Carbon Stock in the Sundarbans Mangrove Forest: Spatial Variations in Vegetation Types and Salinity Zones. Wetl. Ecol. Manag. 2015, 23, 269–283. [Google Scholar] [CrossRef]
- Kabir, M.H.; Abdul Baten, M. Community Mangrove Aqua-Silviculture (CMAS Culture): An Innovation and Climate Resilient Practice by the Sundarbans Mangrove Forest Dependent Rural Communities of Bangladesh. Int. J. Environ. Clim. Change 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Issar, A.S.; Zohar, M. Climate Change: Environment and History of the Near East; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-69851-7. [Google Scholar]
- Tigchelaar, M.; Cheung, W.W.L.; Mohammed, E.Y.; Phillips, M.J.; Payne, H.J.; Selig, E.R.; Wabnitz, C.C.C.; Oyinlola, M.A.; Frölicher, T.L.; Gephart, J.A.; et al. Compound Climate Risks Threaten Aquatic Food System Benefits. Nat. Food 2021, 2, 673–682. [Google Scholar] [CrossRef]
- Kibria, A.S.M.; Haque, M.M. Potentials of Integrated Multi-Trophic Aquaculture (IMTA) in Freshwater Ponds in Bangladesh. Aquac. Rep. 2018, 11, 8–16. [Google Scholar] [CrossRef]
- Ali, H.; Haque, M.M.; Murshed-e-Jahan, K.; Rahi, M.L.; Ali, M.M.; Al-Masud, M.; Faruque, G. Suitability of Different Fish Species for Cultivation in Integrated Floating Cage Aquageoponics System (IFCAS) in Bangladesh. Aquac. Rep. 2016, 4, 93–100. [Google Scholar] [CrossRef]
- Lal, J.; Singh, S.K.; Pawar, L.; Biswas, P.; Meitei, M.M.; Meena, D.K. Integrated Multi-Trophic Aquaculture: A Balanced Ecosystem Approach to Blue Revolution. In Advances in Resting-State Functional MRI; Elsevier: Amsterdam, The Netherlands, 2023; pp. 513–535. [Google Scholar]
- Alam, M.M.; Jørgensen, N.O.G.; Bass, D.; Santi, M.; Nielsen, M.; Rahman, M.A.; Hasan, N.A.; Bablee, A.L.; Bashar, A.; Hossain, M.I.; et al. Potential of Integrated Multitrophic Aquaculture to Make Prawn Farming Sustainable in Bangladesh. Front. Sustain. Food Syst. 2024, 8, 1412919. [Google Scholar] [CrossRef]
- Rao, P.V.S.; Periyasamy, C.; Kumar, K.S.; Rao, A.S. A Role of Algae in an Aquatic Ecosystem. In Algal Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; pp. 3–15. [Google Scholar]
- Yadav, N.K.; Patel, A.B.; Singh, S.K.; Mehta, N.K.; Anand, V.; Lal, J.; Dekari, D.; Devi, N.C. Climate Change Effects on Aquaculture Production and Its Sustainable Management through Climate-Resilient Adaptation Strategies: A Review. Environ. Sci. Pollut. Res. 2024, 31, 31731–31751. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Belton, B.; Alam, M.M.; Ahmed, A.G.; Alam, M.R. Reuse of Fish Pond Sediments as Fertilizer for Fodder Grass Production in Bangladesh: Potential for Sustainable Intensification and Improved Nutrition. Agric. Ecosyst. Environ. 2016, 216, 226–236. [Google Scholar] [CrossRef]
- Zafar, M.; Haque, M.; Aziz, M.; Alam, M. Study on Water and Soil Quality Parameters of Shrimp and Prawn Farming in the Southwest Region of Bangladesh. J. Bangladesh Agric. Univ. 2016, 13, 153–160. [Google Scholar] [CrossRef]
- Abdullah, A.F.; Man, H.C.; Mohammed, A.; Karim, M.M.A.; Yunusa, S.U.; Jais, N.A.B.M. Charting the Aquaculture Internet of Things Impact: Key Applications, Challenges, and Future Trend. Aquac. Rep. 2024, 39, 102358. [Google Scholar] [CrossRef]
- Nambiar, S.P.; Banuru, S.C. A Comprehensive Review of Bioinformatics Tools and Applications Revolutionising Aquatic Animal Health Management. J. Fish Health 2025, 5, 86–110. [Google Scholar] [CrossRef]
- Abisha, R.; Krishnani, K.K.; Sukhdhane, K.; Verma, A.K.; Brahmane, M.; Chadha, N.K. Sustainable Development of Climate-Resilient Aquaculture and Culture-Based Fisheries through Adaptation of Abiotic Stresses: A Review. J. Water Clim. Change 2022, 13, 2671–2689. [Google Scholar] [CrossRef]
- Dubey, S.K.; Trivedi, R.K.; Chand, B.K.; Mandal, B.; Rout, S.K. Farmers’ Perceptions of Climate Change, Impacts on Freshwater Aquaculture and Adaptation Strategies in Climatic Change Hotspots: A Case of the Indian Sundarban Delta. Environ. Dev. 2017, 21, 38–51. [Google Scholar] [CrossRef]
- Bosma, R.H.; Nguyen, T.H.; Siahainenia, A.J.; Tran, H.T.P.; Tran, H.N. Shrimp-based Livelihoods in Mangrove Silvo-aquaculture Farming Systems. Rev. Aquac. 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Velmurugan, A.; Ambast, S.K.; Swarnam, T.P.; Burman, D.; Mandal, S.; Subramani, T. Land Shaping Methods for Climate Change Adaptation in Coastal and Island Region. In Biodiversity and Climate Change Adaptation in Tropical Islands; Elsevier: Amsterdam, The Netherlands, 2018; pp. 577–596. [Google Scholar]
- Mady, B.; Lehmann, P.; Or, D. Evaporation Suppression from Small Reservoirs Using Floating Covers—Field Study and Modeling. Water Resour. Res. 2021, 57, e2020WR028753. [Google Scholar] [CrossRef]
- Akter, R.; Asik, T.Z.; Sakib, M.; Akter, M.; Sakib, M.N.; Al Azad, A.S.M.A.; Maruf, M.; Haque, A.; Rahman, M.M. The Dominant Climate Change Event for Salinity Intrusion in the GBM Delta. Climate 2019, 7, 69. [Google Scholar] [CrossRef]
- Seijger, C.; Datta, D.K.; Douven, W.; van Halsema, G.; Khan, M.F. Rethinking Sediments, Tidal Rivers and Delta Livelihoods: Tidal River Management as a Strategic Innovation in Bangladesh. Water Policy 2019, 21, 108–126. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating Aquaculture Systems (RAS): Environmental Solution and Climate Change Adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Bashar, A.; Hasan, M.M.; Shohan, M.H.; Talukdar, M.M.N.; Biswas, J.C.; Ahammad, A.K.S. Assessment of Embryonic and Larval Development of Nile Tilapia under the Traditional and Re-Circulatory Thermostatic System in Relation to Climatic and Water Quality Variations. Aquac. J. 2023, 3, 70–89. [Google Scholar] [CrossRef]
- Haque, M.M.; Mahmud, M.N. Potential Role of Aquaculture in Advancing Sustainable Development Goals (SDGs) in Bangladesh. Aquac. Res. 2025, 2025, 6035730. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Nielsen, M.; Laurent, A. Environmental Sustainability of Future Aquaculture Production: Analysis of Singaporean and Norwegian Policies. Aquaculture 2022, 549, 737717. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) Analysis: Main Issues on Management and Future Challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Singh, P.; Gulati, R.; Sharma, R.; Lowanshi, A. Constraints and Challenges of Fish Farmers with a Recirculatory Aquaculture System (RAS) in Haryana State, India. Environ. Conserv. J. 2024, 25, 483–487. [Google Scholar] [CrossRef]
- Brown, A.R.; Wilson, R.W.; Tyler, C.R. Assessing the Benefits and Challenges of Recirculating Aquaculture Systems (RAS) for Atlantic Salmon Production. Rev. Fish. Sci. Aquac. 2025, 33, 380–401. [Google Scholar] [CrossRef]
- Azad, K.N.; Salam, M.A.; Azad, K.N. Aquaponics in Bangladesh: Current Status and Future Prospects. J. Biosci. Agric. Res. 2016, 7, 669–677. [Google Scholar] [CrossRef]
Fisheries Resource Areas | Water Area (ha) | Production (MT) | % of Total |
---|---|---|---|
Inland capture fisheries | |||
River and estuary | 853,863 | 389,035 | 7.92 |
Sundarbans | 177,700 | 26,047 | 0.53 |
Beel | 114,161 | 108,625 | 2.21 |
Kaptai lake | 68,800 | 17,056 | 0.35 |
Floodplain | 2,646,757 | 842,520 | 17.14 |
Total | 3,861,281 | 1,383,283 | 28.15 |
Marine capture fisheries | |||
Industrial (trawl) | 146,037 | 2.97 | |
Artisanal | 533,348 | 10.85 | |
Total | 679,385 | 13.82 | |
Inland aquaculture | |||
Pond | 415,872 | 2,272,667 | 46.24 |
Seasonal culture water body | 144,513 | 231,582 | 4.71 |
Baor | 5671 | 12,158 | 0.25 |
Shrimp and prawn farm | 261,833 | 301,103 | 6.13 |
Crab | 9372 | 12,881 | 0.26 |
Pen culture | 9080 | 16,402 | 0.33 |
Cage culture | 193,232 m3 | 5254 | 0.11 |
Total | 84,6341 | 2,852,047 | 58.03 |
Country total | 4,914,715 | 100.00 |
Species/Group | Inland Fish Production in MT (Both Capture Fisheries & Aquaculture) | Marine Fish Production in MT (Capture Fisheries) | Total in MT | % of Total |
---|---|---|---|---|
Major carp (Labeo rohita, Catla catla, Cirrhinus cirrhosus) | 1,084,397 | 1,084,397 | 22.06 | |
Other carp (L. bata, L. calbasu, L. gonius) | 144,584 | 144,584 | 2.94 | |
Exotic carp (Hypophthalmichthys molitrix, Ctenopharyngodon idella, Cyprinus carpio) | 545,141 | 545,141 | 11.09 | |
Pangasius (Pangasianodon hypophthalmus) | 403,283 | 403,283 | 8.21 | |
Other catfish (Heteropneustes fossilis, Clarias batrachus) | 76,000 | 76,000 | 1.55 | |
Snakehead | 81,092 | 81,092 | 1.65 | |
Live fish | 184,314 | 184,314 | 3.75 | |
Tilapia (Oreochromis spp.) | 421,191 | 421,191 | 8.57 | |
Other inland fish | 666,642 | 666,642 | 13.56 | |
Crab (Scylla serrata, S. olivacea) | 12,881 | 12,881 | 0.26 | |
Hilsa (Tenualosa ilisha) | 271,330 | 300,012 | 571,342 | 11.63 |
Shrimp and Prawn (Penaeus monodon, Macrobrachium rosenbergii) | 224,539 | 46,763 | 271,302 | 5.52 |
Sardine (Sardinella fimbriata) | 51,500 | 51,500 | 1.05 | |
Bombay duck (Harpadon nehereus) | 81,942 | 81,942 | 1.67 | |
Indian salmon (Polydactylus indicus) | 200 | 200 | 0.00 | |
Pomfret | 12,052 | 12,052 | 0.24 | |
Jewfish (Otolithes ruber) | 42,754 | 42,754 | 0.87 | |
Sea catfish (Tachysurus spp.) | 15,305 | 15,305 | 0.24 | |
Shark/Skate/Ray | 3351 | 3351 | 0.07 | |
Tuna and Tuna-like fish | 15,051 | 15,051 | 0.31 | |
Other marine fish | 110,455 | 110,455 | 2.25 | |
Total (MT) | 3,496,958 | 637,476 | 4,134,434 | 100.00 |
% of total | 84.58 | 15.42 | 100 |
Criterion | Description | |
---|---|---|
Inclusion | Exclusion | |
Time frame | After 2006 | Before 2006 |
Type of Language | English | Non-English |
Type of Literature | Peer-reviewed literature, government, and organizational reports | None |
Area of Content | Climate change impacts, resilience building, adaptation, and mitigation strategies in fisheries and aquaculture | Non-aquaculture or non-fisheries sectors |
Publication Status | Published and available online | Published but not accessible, unpublished manuscripts |
Geographic Coverage | Focus on Bangladesh, with reference to regional/global comparative studies where relevant | None |
General Topics | Climate change affects fisheries and aquaculture, vulnerability assessment, adaptive practices, livelihood resilience, governance, and policy interventions | Topics unrelated to climate change or resilience in fisheries/aquaculture |
Methodologies | Empirical studies (field surveys, experiments, modeling), policy analyses, reviews, and syntheses | Studies lacking methodological clarity or without a focus on resilience/adaptation |
Type of Species | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian major carps | |||||||||||||
Chinese carps | |||||||||||||
Common carp | |||||||||||||
Tilapia | |||||||||||||
Pangasius * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, M.M.; Mahmud, M.N.; Ahammad, A.K.S.; Alam, M.M.; Bablee, A.L.; Hasan, N.A.; Bashar, A.; Hasan, M.M. Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies. Climate 2025, 13, 209. https://doi.org/10.3390/cli13100209
Haque MM, Mahmud MN, Ahammad AKS, Alam MM, Bablee AL, Hasan NA, Bashar A, Hasan MM. Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies. Climate. 2025; 13(10):209. https://doi.org/10.3390/cli13100209
Chicago/Turabian StyleHaque, Mohammad Mahfujul, Md. Naim Mahmud, A. K. Shakur Ahammad, Md. Mehedi Alam, Alif Layla Bablee, Neaz A. Hasan, Abul Bashar, and Md. Mahmudul Hasan. 2025. "Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies" Climate 13, no. 10: 209. https://doi.org/10.3390/cli13100209
APA StyleHaque, M. M., Mahmud, M. N., Ahammad, A. K. S., Alam, M. M., Bablee, A. L., Hasan, N. A., Bashar, A., & Hasan, M. M. (2025). Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies. Climate, 13(10), 209. https://doi.org/10.3390/cli13100209