Hail Netting in Apple Orchards: Current Knowledge, Research Gaps, and Perspectives for Digital Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. PRISMA Review
- Were not articles or review articles;
- Were not written in English;
- Were not published in peer-reviewed journals;
- Were clearly out of scope (e.g., studies on grapes, kiwi, pears, or other unrelated fruits).
- 46 articles from WoS;
- 24 unique articles from Scopus (not present in WoS);
- 9 unique articles from Google Scholar (not present in WoS or Scopus).
2.2. Regional Focus: Study in Vacaria (Brazil)
2.3. Future Perspectives and Technological Opportunities
3. Results and Discussion
3.1. PRISMA Review
3.2. Regional Focus: Study in Vacaria (Brazil)
3.3. Challenges, Future Perspectives and Technological Opportunities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AVG | aminoethoxyvinylglycine |
CA | Controlled atmosphere |
CCD | Center for Development in Digital Agriculture |
Cfb | Temperate oceanic climate (Köppen climate classification) |
CNNs | Convolutional Neural Networks |
DAT | Agrotechnological Districts |
DL | Deep Learning |
GLS | Glomerella Leaf Spot |
ME Meta-PCA | Main Effects Meta Principal Components Analysis |
ML | Machine Learning |
PAR | Photosynthetically active radiation |
PRI | Photochemical Reflectance Index |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RF | Random Forest |
R/FR | red/far-red |
RS | Remote Sensing |
TCSA | Trunk Cross-Sectional Area |
TSS | Total Soluble Solids |
QY | Quantum Yield |
WoS | Web of Science |
References
- Kumar, A.; Negi, M.; Joshi, Y.; Dangi, G.; Sharma, D.P.; Sharma, K.C. Anti-Hail Nets under Hailstorm Incidence: Impact on Apple Orchard Dynamics. N. Z. J. Crop Hortic. Sci. 2024, 53, 1308–1328. [Google Scholar] [CrossRef]
- Mir, M.A.; Verma, P.; Sharma, N.C.; Sharma, N.; Sarma, U. Apple (Malus × domestica Borkh.) Production and Quality in Response to Anti-Hail Nets. Int. J. Biometeorol. 2024, 68, 927–938. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, S.; Rana, N.; Sharma, U.; Patiyal, V.; Banita; Prasad, H. Management of Hailstorms under a Changing Climate in Agriculture: A Review. Environ. Chem. Lett. 2022, 20, 3971–3991. [Google Scholar] [CrossRef]
- Porsch, A.; Gandorfer, M.; Bitsch, V. Strategies to Manage Hail Risk in Apple Production. Agric. Financ. Rev. 2018, 78, 532–550. [Google Scholar] [CrossRef]
- Bosco, L.C.; Bergamaschi, H.; Marodin, G.A.B. Solar Radiation Effects on Growth, Anatomy, and Physiology of Apple Trees in a Temperate Climate of Brazil. Int. J. Biometeorol. 2020, 64, 1969–1980. [Google Scholar] [CrossRef]
- Kalcsits, L.; Musacchi, S.; Layne, D.R.; Schmidt, T.; Mupambi, G.; Serra, S.; Mendoza, M.; Asteggiano, L.; Jarolmasjed, S.; Sankaran, S.; et al. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agric. For. Meteorol. 2017, 237–238, 9–17. [Google Scholar] [CrossRef]
- Do Amarante, C.V.T.; Stanger, M.C.; Coldebella, M.C.; Vilvert, J.C.; Dos Santos, A.; Steffens, C.A. Fruit Quality and Yield of ‘Imperial Gala’ Apple Trees Protected by Anti-Hail Nets of Different Colorations in Southern Brazil. Acta Hortic. 2018, 1205, 897–904. [Google Scholar] [CrossRef]
- Mauta, D.S.; Hawerroth, F.J.; Amarante, C.V.T.; Mota, C.S.; Vilvert, J.C. Photosynthetic Response of ‘Maxi Gala’ Apple Trees Covered with Photoselective Anti-Hail Nets. Acta Hortic. 2020, 1268, 327–334. [Google Scholar] [CrossRef]
- Bacelar, E.; Pinto, T.; Anjos, R.; Morais, M.C.; Oliveira, I.; Vilela, A.; Cosme, F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. Plants 2024, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahman, N.H.; Hamzah, N. Climate Risk Assessment for Small and Medium Enterprises: Strategies, Challenges, and Adaptation. In Corporate Governance and Sustainability: Navigating Malaysia’s Business Landscape; Springer: Singapore, 2024; pp. 225–234. [Google Scholar] [CrossRef]
- Manja, K.; Aoun, M. The Use of Nets for Tree Fruit Crops and Their Impact on the Production: A Review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- El-Ansary, D.O. Smart Farming and Orchard Management: Insights and Innovations. Curr. Food Sci. Technol. Rep. 2025, 3, 10. [Google Scholar] [CrossRef]
- EMBRAPA. Ciência e Tecnologia Tornaram o Brasil um dos Maiores Produtores Mundiais de Alimentos. 2022. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/75085849/ciencia-e-tecnologia-tornaram-o-brasil-um-dos-maiores-produtores-mundiais-de-alimentos (accessed on 28 July 2025).
- Furuya, D.E.G.; Bolfe, É.L.; Parreiras, T.C.; Barbedo, J.G.A.; Santos, T.T.; Gebler, L. Combination of Remote Sensing and Artificial Intelligence in Fruit Growing: Progress, Challenges, and Potential Applications. Remote Sens. 2024, 16, 4805. [Google Scholar] [CrossRef]
- Soethe, C.; Steffens, C.A.; Hawerroth, F.J.; Moreira, M.A.; do Amarante, C.V.T.; Stanger, M.C. Quality of ‘Baigent’ Apples as a Function of Pre-Harvest Application of Aminoethoxyvinylglycine and Ethephon Stored in Controlled Atmosphere. Appl. Food Res. 2022, 2, 100117. [Google Scholar] [CrossRef]
- FAPESP. Fundação de Amparo à Pesquisa do Estado de São Paulo. Center of Science for Development in Digital Agriculture. 2022—CCD-AD/SemeAr. Available online: https://bv.fapesp.br/en/auxilios/111242/center-of-science-for-development-in-digital-agriculture-ccd-adsemear/ (accessed on 24 July 2025).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An Efficient Framework for Conducting Systematic Literature Reviews in Agricultural Sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, V.; Molina-Corral, F.J.; Olivas-Dorantes, C.L.; Jacobo-Cuéllar, J.L.; González-Aguilar, G.; Espino, M.; Olivas, G.I. Comparative Study of the Effects of Black or White Hail Nets on the Fruit Quality of ‘Golden Delicious’ Apples. Fruits 2016, 71, 229–238. [Google Scholar] [CrossRef]
- Schmitz, C.; Zimmermann, L.; Schiffers, K.; Balmer, M.; Luedeling, E. ProbApple—A Probabilistic Model to Forecast Apple Yield and Quality. Agric. Syst. 2025, 226, 104298. [Google Scholar] [CrossRef]
- Brglez Sever, M.; Tojnko, S.; Breznikar, A.; Skendrović Babojelić, M.; Ivančič, A.; Sirk, M.; Unuk, T. The Influence of Differently Coloured Anti-Hail Nets and Geomorphologic Characteristics on Microclimatic and Light Conditions in Apple Orchards. J. Cent. Eur. Agric. 2020, 21, 386–397. [Google Scholar] [CrossRef]
- Romo-Chacón, A.; Orozco-Avitia, J.A.; Gardea, A.A.; Guerrero-Prieto, V.; Soto-Parra, J.M. Hail Net Effect on Photosynthetic Rate and Fruit Color Development of ‘Starkrimson’ Apple Trees. J. Am. Pomol. Soc. 2007, 61, 174. [Google Scholar]
- Treder, W.; Mika, A.; Buler, Z.; Klamkowski, K. Effects of Hail Nets on Orchard Light Microclimate, Apple Tree Growth, Fruiting and Fruit Quality. Acta Sci. Pol. Hortorum Cultus 2016, 15, 17–27. [Google Scholar]
- Stroka, M.A.; Ayub, R.A.; Silva, D.M.D.; Pessenti, I.L.; Pereira, A.B.; Barbosa, E.A.A. Effect of Anti-Hail Nets with Different Colors on ‘Eva’ Apple Trees Agronomical Responses. Rev. Bras. Frutic. 2021, 43, e-157. [Google Scholar] [CrossRef]
- Brito, C.; Rodrigues, M.; Pinto, L.; Gonçalves, A.; Silva, E.; Martins, S.; Rocha, L.; Pavia, I.; Arrobas, M.; Ribeiro, A.; et al. Grey and black anti-hail nets ameliorated apple (Malus × domestica Borkh. cv. Golden Delicious) physiology under mediterranean climate. Plants 2021, 10, 2578. [Google Scholar] [CrossRef]
- Bogo, A.; Casa, R.T.; Rufato, L.; Gonçalves, M.J. The Effect of Hail Protection Nets on Glomerella Leaf Spot in ‘Royal Gala’ Apple. Crop Prot. 2012, 31, 40–44. [Google Scholar] [CrossRef]
- Marchioretto, L.D.R.; Rossi, A.D.; Marodin, G.A.B. Chemical Thinning Programs for ‘Fuji Mishima’ Apple Trees under Black Anti-Hail Net. Pesqui. Agropecu. Bras. 2023, 58, e03196. [Google Scholar] [CrossRef]
- Iglesias, I.; Alegre, S. The Effect of Anti-Hail Nets on Fruit Protection, Radiation, Temperature, Quality and Probability of Mondial Gala Apples. J. Appl. Hortic. 2006, 8, 91–100. [Google Scholar] [CrossRef]
- Gonzalez, L.; Àvila, G.; Carbó, J.; Bonany, J.; Alegre, S.; Torres, E.; Asin, L. Hail Nets Do Not Affect the Efficacy of Metamitron for Chemical Thinning of Apple Trees. J. Hortic. Sci. Biotechnol. 2020, 95, 128–135. [Google Scholar] [CrossRef]
- Fruk, G.; Fruk, M.; Vuković, M.; Buhin, J.; Jatoi, M.A.; Jemrić, T. Colouration of Apple cv. ‘Braeburn’ Grown under Anti-Hail Nets in Croatia. Acta Hortic. Regiotect. 2016, 19, 1–4. [Google Scholar] [CrossRef]
- Do Amarante, C.V.T.; Steffens, C.A.; Argenta, L.C. Yield and Fruit Quality of ‘Gala’ and ‘Fuji’ Apple Trees Protected by White Anti-Hail Net. Sci. Hortic. 2011, 129, 79–85. [Google Scholar] [CrossRef]
- Boini, A.; Casadio, N.; Bresilla, K.; Perulli, G.D.; Manfrini, L.; Grappadelli, L.C.; Morandi, B. Early Apple Fruit Development under Photoselective Nets. Sci. Hortic. 2022, 292, 110619. [Google Scholar] [CrossRef]
- Serra, S.; Borghi, S.; Mupambi, G.; Camargo-Alvarez, H.; Layne, D.; Schmidt, T.; Musacchi, S. Photoselective Protective Netting Improves ‘Honeycrisp’ Fruit Quality. Plants 2020, 9, 1708. [Google Scholar] [CrossRef]
- Pajač Živković, I.; Jemrić, T.; Fruk, M.; Buhin, J.; Barić, B. Influence of Different Netting Structures on Codling Moth and Apple Fruit Damages in Northwest Croatia. Agric. Conspec. Sci. 2016, 81, 99–102. [Google Scholar]
- Corollaro, M.L.; Manfrini, L.; Endrizzi, I.; Aprea, E.; Demattè, M.L.; Charles, M.; Gasperi, F. The Effect of Two Orchard Light Management Practices on the Sensory Quality of Apple: Fruit Thinning by Shading or Photo-Selective Nets. J. Hortic. Sci. Biotechnol. 2015, 90, 99–108. [Google Scholar] [CrossRef]
- Brkljača, M.; Rumora, J.; Vuković, M.; Jemrić, T. The Effect of Photoselective Nets on Fruit Quality of Apple cv. ‘Cripps Pink’. Agric. Conspec. Sci. 2016, 81, 87–90. [Google Scholar]
- Mupambi, G.; Musacchi, S.; Serra, S.; Kalcsits, L.A.; Layne, D.R.; Schmidt, T. Protective Netting Improves Leaf-Level Photosynthetic Light Use Efficiency in ‘Honeycrisp’ Apple under Heat Stress. HortScience 2018, 53, 1416–1422. [Google Scholar] [CrossRef]
- Mészáros, M.; Bělíková, H.; Čonka, P.; Náměstek, J. Effect of Hail Nets and Fertilization Management on the Nutritional Status, Growth and Production of Apple Trees. Sci. Hortic. 2019, 255, 134–144. [Google Scholar] [CrossRef]
- Candian, V.; Pansa, M.G.; Santoro, K.; Spadaro, D.; Tavella, L.; Tedeschi, R. Photoselective Exclusion Netting in Apple Orchards: Effectiveness against Pests and Impact on Beneficial Arthropods, Fungal Diseases and Fruit Quality. Pest Manag. Sci. 2020, 76, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Mierczak, K.; Garus-Pakowska, A. An Overview of Apple Varieties and the Importance of Apple Consumption in the Prevention of Non-Communicable Diseases—A Narrative Review. Nutrients 2024, 16, 3307. [Google Scholar] [CrossRef]
- Fazio, G. Genetics, breeding, and genomics of apple rootstocks. In The Apple Genome; Korban, S.S., Ed.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021; pp. 123–150. [Google Scholar] [CrossRef]
- Nelson, S.G.; Klodd, A.E.; Hutchison, W.D. Hail Netting Excludes Key Insect Pests and Protects from Fruit Damage in a Commercial Minnesota Apple Orchard. J. Econ. Entomol. 2023, 116, 2104–2115. [Google Scholar] [CrossRef]
- Nelson, S.G.; Meys, E.L.; Hutchison, W.D. Non-Target Impacts of Hail Netting and Insecticides on Natural Enemy Abundance and Diversity in a Midwest, US Commercial Apple Orchard. Crop Prot. 2024, 183, 106643. [Google Scholar] [CrossRef]
- Granata, E.; Mogilnaia, E.; Alessandrini, C.; Sethi, K.; Vitangeli, V.; Biella, P.; Brambilla, M. Management Factors Strongly Affect Flower-Visiting Insects in Intensive Apple Orchards. Agric. Ecosyst. Environ. 2025, 380, 109382. [Google Scholar] [CrossRef]
- DiGiacomo, G.; Nelson, S.G.; Jacobson, J.; Klodd, A.; Hutchison, W.D. Hail Netting: An Economically Competitive IPM Alternative to Insecticides for Midwest Apple Production. Front. Insect Sci. 2023, 3, 1266426. [Google Scholar] [CrossRef]
- Szabó, A.; Tamás, J.; Nagy, A. The Influence of Hail Net on the Water Balance and Leaf Pigment Content of Apple Orchards. Sci. Hortic. 2021, 283, 110112. [Google Scholar] [CrossRef]
- Bureau, M.; Béziat, B.; Duporté, G.; Bouchart, V.; Lecluse, Y.; Barron, E.; Baldi, I. Pesticide Exposure of Workers in Apple Growing in France. Int. Arch. Occup. Environ. Health 2022, 95, 811–823. [Google Scholar] [CrossRef]
- Shtai, W.; Tagliavini, M.; Holtz, T.; Abdelkader, A.B.; Petrillo, M.; Zanotelli, D.; Montagnani, L. Total and Diffuse Light Distribution Within the Canopy of an Apple Orchard as Affected by Reflective Ground Covers. Italus Hortus 2020, 27, 69–84. [Google Scholar] [CrossRef]
- Willsea, N.; Blanco, V.; Howe, O.; Campbell, T.; Biasuz, E.C.; Kalcsits, L. Retractable Netting and Evaporative Cooling for Sunburn Control and Increasing Red Color for ‘Honeycrisp’ Apple. HortScience 2023, 58, 1341–1347. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, B.; Zhang, D.; Li, Q.; Li, Q.; Li, X.; Zou, Y. Effects of four photo-selective colored hail nets on an apple in Loess Plateau, China. Horticulturae 2023, 9, 1061. [Google Scholar] [CrossRef]
- Boini, A.; Bortolotti, G.; Perulli, G.D.; Venturi, M.; Bonora, A.; Manfrini, L.; Corelli-Grappadelli, L. Late Ripening Apple Production Benefits from High Shading and Water Limitation under Exclusion Netting. Horticulturae 2022, 8, 884. [Google Scholar] [CrossRef]
- Vuković, M.; Jurić, S.; Maslov Bandić, L.; Levaj, B.; Fu, D.Q.; Jemrić, T. Sustainable Food Production: Innovative Netting Concepts and Their Mode of Action on Fruit Crops. Sustainability 2022, 14, 9264. [Google Scholar] [CrossRef]
- Schimalski, M.B.; Rufato, L.; Jastrombek, J.M.; Liesenberg, V. Mapping Apple Orchards in the Municipality of São Joaquim (Santa Catarina, Brazil) Using Sentinel-2 Data. Rev. Bras. Frutic. 2022, 44, e-842. [Google Scholar] [CrossRef]
- IBGE. Instituto Brasileiro de Geografia e Estatística. 2022. Brasil, Rio Grande do Sul, Vacaria. Available online: https://www.ibge.gov.br/cidades-e-estados/rs/vacaria.html (accessed on 28 July 2025).
- da Silva, T.L.; Romani, L.A.S.; Evangelista, S.R.M.; Datcu, M.; Massruhá, S.M.F.S. Drought Monitoring in the Agrotechnological Districts of the Semear Digital Center. Atmosphere 2025, 16, 465. [Google Scholar] [CrossRef]
- EMBRAPA. AgroTag. Available online: https://www.agrotag.cnptia.embrapa.br (accessed on 10 August 2025).
- Bosco, L.C.; Bergamaschi, H.; Cardoso, L.S.; de Paula, V.A.; Marodin, G.A.B.; Nachtigall, G.R. Apple Production and Quality When Cultivated under Anti-Hail Cover in Southern Brazil. Int. J. Biometeorol. 2015, 59, 773–782. [Google Scholar] [CrossRef]
- Bosco, L.C.; Bergamaschi, H.; Cardoso, L.S.; de Paula, V.A.; Marodin, G.A.B.; Brauner, P.C. Microclimate Alterations Caused by Agricultural Hail Net Coverage and Effects on Apple Tree Yield in Subtropical Climate of Southern Brazil. Bragantia 2018, 77, 181–192. [Google Scholar] [CrossRef]
- Soethe, C.; Steffens, C.A.; Hawerroth, F.J.; do Amarante, C.V.T.; Heinzen, A.S. Maturation of ‘Baigent’ Apples Protected by Anti-Hail Nets and Sprayed with Aminoethoxyvinylglycine and Ethephon. Pesqui. Agropecu. Bras. 2021, 56, e02439. [Google Scholar] [CrossRef]
- Bosančić, B.; Mićić, N.; Blanke, M.; Pecina, M. A Main Effects Meta Principal Components Analysis of Netting Effects on Fruit: Using Apple as a Model Crop. Plant Growth Regul. 2018, 86, 455–464. [Google Scholar] [CrossRef]
- Copernicus. Sentinel-2. Available online: https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data/sentinel-2 (accessed on 25 August 2025).
- NASA. Harmonized Landsat and Sentinel-2. Available online: https://hls.gsfc.nasa.gov/ (accessed on 25 August 2025).
- PlanetScope. Available online: https://earth.esa.int/eogateway/missions/planetscope. (accessed on 25 August 2025).
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote Sensing Based Forest Cover Classification Using Machine Learning. Sci. Rep. 2024, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Rumyantseva, O.; Strigul, N. Data-Driven Analysis of Forest–Climate Interactions in the Conterminous United States. Climate 2021, 9, 108. [Google Scholar] [CrossRef]
- Parajuli, A.; Parajuli, R.; Banjara, M.; Bhusal, A.; Dahal, D.; Kalra, A. Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data. Climate 2024, 12, 190. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Wang, Y.; Xiong, J.; Zhang, Z.; Zhao, B.; Luo, L.; Lin, G.; He, P. Application of convolutional neural network-based detection methods in fresh fruit production: A comprehensive review. Front. Plant Sci. 2022, 13, 868745. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Wang, H.; Xu, Y.; Zhang, R. Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review. Agronomy 2023, 13, 1625. [Google Scholar] [CrossRef]
- Assunção, E.T.; Gaspar, P.D.; Mesquita, R.J.; Simões, M.P.; Ramos, A.; Proença, H.; Inacio, P.R. Peaches Detection Using a Deep Learning Technique—A Contribution to Yield Estimation, Resources Management, and Circular Economy. Climate 2022, 10, 11. [Google Scholar] [CrossRef]
- Mushtaq, M.A.; Ateeq, M.; Ikram, M.; Alam, S.M.; Kaleem, M.M.; Ashraf, M.A.; Shireen, F. Securing Fruit Trees Future: AI-Driven Early Warning and Predictive Systems for Abiotic Stress in Changing Climate. Plant Stress 2025, 17, 100953. [Google Scholar] [CrossRef]
- Torgbor, B.A.; Rahman, M.M.; Brinkhoff, J.; Sinha, P.; Robson, A. Integrating Remote Sensing and Weather Variables for Mango Yield Prediction Using a Machine Learning Approach. Remote Sens. 2023, 15, 3075. [Google Scholar] [CrossRef]
- Zhang, C.; Marzougui, A.; Sankran, S. High-Resolution Satellite Imagery Applications in Crop Phenotyping: An Overview. Comput. Electron. Agric. 2020, 175, 105584. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, X.; Tan, X.; Tian, J. Spectrotemporal Fusion: Generation of Frequent Hyperspectral Satellite Imagery. Remote Sens. Environ. 2025, 319, 114639. [Google Scholar] [CrossRef]
- Bolfe, E.L.; Jorge, L.A.C.; Sanches, I.D.; Luchiari Júnior, A.; Costa, C.C.; Victoria, D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Da Silveira, F.; Da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ Perception of the Barriers That Hinder the Implementation of Agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Dibbern, T.; Romani, L.; Massruhá, S. Drivers and Barriers to Digital Agriculture Adoption: A Mixed-Methods Analysis of Challenges and Opportunities in Latin America. Sustainability 2025, 17, 3676. [Google Scholar] [CrossRef]
Study Objectives | Number of Articles | Identified Information |
---|---|---|
Microclimate/light management/solar radiation/sunburn | 29 | Atmosphere: [air temperature, humidity (air, relative), wind (parameters, speed)] Climate: [geomorphological, light (interception, spectra assessment, spectral composition), microclimatic, Photosynthetically active radiation (PAR), photon flux density, precipitation, radiation (net, photosynthetically, solar), sunburn, temperature (bark, canopy, dew point and the wet-bulb, fruit surface, heat index, maximum and minimum), thermographic imaging, weather] Plant: [acoustic pressure, anatomical and physiological variables, angle, anthocyanins, area, biotic and abiotic stresses, carbohydrates and organic acids, chemicals, chlorophylls and carotenoids, disease, distance, dry matter, force (delta, final, linear distance, max, mean, ratio, yield), fruit (color, fruit set, growth, pests, pigment, quality, skin, trees), harvest, leaf (area index, cuticle, micromorphology, pests, stomatal conductance, thickness, thinning, water potential), material, net carbon assimilation rate, pest, pesticide, phenol, phenology, photochemical (efficiency, reflectance Index—PRI), plant architecture and potential irradiation, pruning and dormant sprays, quantum yield, reflective mulches and biostimulants, shoot, soluble solids, weed] Soil: (moisture, soil temperature) Other: (caliper, correlation, sensitivity, statistical) |
Fruit quality | 27 | Atmosphere: [air temperature, humidity (maximum and minimum relative, air)] Climate: [light (supply, measurement, intensity, quality), meteorological, precipitation, sunburn, temperature (maximum, minimum and average)] Plant: [acid (ascorbic, chlorogenic, organic, titratable), anthocyanin, antioxidant activity, area, aroma volatile, attributes (chemical, physical, sensory), branch, canopy, carotenoids, chlorophylls (fluorescence, relative content, spectrophotometric determination), crop production, distance (linear, peaks), epicatechin and procyanidin B1, flavonoid, floridizine, force (delta, final, linear distance, max, mean, peaks, ratio, yield), fruit (damage, diameter, diseases, firmness, hardness, hue angle, length, luster, mass, maturation, number, physiological disorders, size, surface temperature, weight, yield), growth (new shoot, plant), intercellular CO2 concentration, leaf (area index, relative water content, thickness), liquid chromatography/tandem mass spectroscopy, phenolic (individual, total), photosynthetic rate, physicochemical, pressure (mean and max acoustic), ripening, seed, skin color (intensity, coverage), soluble solids, starch, sugar (composition, core index, core fruit rate, soluble, total), transpiration rate, trunk, volatile compounds, yield (quantum)] Soil: (soil temperature) Other: (statistical evaluation, storage conditions) |
Pest/insect and disease control | 14 | Atmosphere: (air temperature) Climate: [climate, temperature (habitat, surface)] Plant: [apple maggot (Rhagoletis pomonella), arthropod, codling moth (Cydia pomonella), disease (intensity, management, progress curve, severity), drivers of flower-visiting insects, foliar insects, fruit (damage caused by pests, quality), insecticide spray, larval damage, mites, non-parasitic damage, nutraceutical analysis, pesticide, phenology, plant architecture and potential irradiation, plant materials, post-harvest rots and bitter pit, pruning and dormant sprays, sampling of insects, symptom, thinning, weed control, yield] Soil: (soil management) Water: (water management) Other: [developmental rates, economic, farmers’ awareness of organic apple production, farmers’ knowledge and perceptions, farm and farmer characteristics, final knock-down treatment, hail net cost, pest management practices, sensitivity analysis, statistical analysis, tethered virgin females, trapping (calling females, pan sampling, synthetic pheromone)] |
Yield and production | 13 | Atmosphere: (air humidity, air temperature, wind) Climate: [light (intensity, quality), micrometeorological conditions, meteorological, net radiation, PAR, temperature (maximum, minimum)] Plant: [canopy, chlorophyll fluorescence, diameter, firmness, fruit (chemistry, color, diameter, number, quality, shape, set), growth, height, hue angle, leaf (relative water content, area), length (fruit and branch), mass, organic acids, phenolic, plant materials, productivity, shoot growth, soluble solids, titratable acidity, trunk cross-section area, yield (efficiency, per tree, total, high-quality, quantum)] Soil: (soil temperature) Water: (leaf relative water content) Other: (principal component, statistical analysis) |
Physiological responses | 9 | Atmosphere: [humidity (maximum and minimum)] Climate: (degree days, PAR, precipitation, temperature) Plant: [acidity, antioxidant, chemicals, chlorophyll fluorescence, chlorogenic acid f, color-intensity, epicatechin and procyanidin B1, floridizine, fruit (firmness, weight, colour, maturation, quality), hue angle (h°), iodine-starch index, leaf (area index, gas exchange, water status, biochemical, Ionome), phenolic compounds, phenology, physicochemical attributes of the fruit and harvest, plant material, QY (quantum yield), sclerophylly indexes, soluble solids, starch conversion, stomatal conductance, transpiration] Soil: (glomalin-related soil proteins) Water: (leaf water status) Other: (sensitivity analysis, statistical analysis, storage conditions and variables) |
Coloration improvement | 8 | Climate: (climate conditions, light, sunburn) Plant: [generative, fruit (colouration, quality, ripeness parameters, skin, surface temperature, trees), phenols (total, individual), spectrophotometric determination of chlorophylls and carotenoids, vegetative] Other: (reflective mulches and biostimulants, statistical evaluation) |
Water use and irrigation | 6 | Climate: (microclimatic, temperature, thermographic imaging, weather and irrigation) Plant: [dry matter content, fruit (element content, growth, maturity, quality, weight), leaf (element content, gas exchanges, transpiration rate, water potential), physiology, pigment content, spectrophotometric determination of chlorophylls and carotenoids, yield/production] Water: (water savings) Other: (net treatments, statistical analysis) |
Risk analysis and insurance | 4 | Climate: (altitude range) Plant: [planted area, quality (normal conditions, reduction, market price), yield (data, reduction)] Soil: (slope interval) Other: (cost, economic, insurance, price, spatial location, wealth data) |
Quality/economic losses | 3 | Atmosphere: (humidity) Climate: (altitude range, light Intensity, temperature) Plant: [determination of photosynthetic rate, flavonoid, fruit (weight, shape index, luster, sugar core rate), intercellular CO2 concentration, leaf (thickness, area and chlorophyll), phenol, quality (parameters, fruit, yield), soluble sugar, titratable acid, transpiration rate, vitamin C] Soil: (hardness, slope) |
Impact of insecticides/pesticide | 3 | Plant: (Insecticide spraying, Net × Spray interaction, Yield and quality data) Other: [analytical methods, cost, dermal contamination, economic, inhalation, larval damage, marketable, predator family (Richness, abundance, diversity), statistical analysis, trapping (synthetic pheromone, females)] |
Pollination and biodiversity | 3 | Plant: (apple variety on breeding success, breeding density, length of hedgerows, tree height, tree pruning, % herbicide) Soil: (% bare soil) Water: (% droplet) Other: (effect of predation, elevational span, model species, nest-support, % covered by nets, % of rows) |
Soil and leaf traits | 2 | Climate: (microclimatic) Plant: [chlorophyll a fluorescence, element content—leaves and fruit, growth, leaf (gas exchange, water status, biochemical analysis, ionome), material, production and fruit weight, Sclerophylly indexes, yield] Soil: (Glomalin-related soil proteins) Other: (statistical analysis) |
Apple | Countries |
---|---|
Fuji | Brazil, Germany, Italy, Lebanon, Slovenia |
Gala | Brazil, Germany, Morocco, Switzerland |
Braeburn | Croatia, Germany, Italy |
Golden Delicious | Italy, Czech Republic, Mexico, Morocco, Portugal, Switzerland |
Royal Gala | Australia, Brazil, Morocco |
Jonagold | Germany, Lebanon |
Honeycrisp | Canada, USA |
Braeburn Mariri Red | Germany, Slovenia |
Rosy Glow | Italy, South Africa |
SweeTango | USA |
Reference | Focus | Data | Results |
---|---|---|---|
Bosco et al., 2015 [58] | Evaluated the effects of anti-hail nets on the physical, chemical, and sensory attributes of apples grown in southern Brazil. | Black hail net; PAR measurements; physical, chemical, and sensory fruit analyses (2008–2011) | Anti-hail net reduced PAR by 32% and altered R/FR (red/far-red) ratio; slightly delayed fruit ripening without affecting the quality of ‘Royal Gala’ and ‘Fuji Suprema’ apples. |
Bosco et al., 2018 [59] | Characterized the microclimate and productivity of apple orchards under hail nets, providing numeric parameters to support orchard management and crop modeling. | PAR, temperature, humidity, wind, and rainfall were continuously measured; yield was assessed by fruit number and weight per plant. | Hail nets reduced PAR by 32.8% and wind speed by 30%, without affecting air temperature, humidity, or rainfall. Apple yield tended to be higher under the nets, especially when hail events occurred. |
Soethe et al., 2022 [15] | Evaluated the effects of aminoethoxyvinylglycine (single or split dose), with or without ethephon, on fruit quality, antioxidant activity, and phenolic content of ‘Baigent’ apples grown under black hail nets after controlled atmosphere storage. | Apples were stored for 8 months in controlled atmosphere (CA) conditions. The study assessed fruit quality parameters including firmness, color, ethylene and CO2 production, total antioxidant activity, phenolic compound content, and physicochemical attributes. Statistical analysis used a randomized block design with Tukey’s test and Pearson correlation. | AVG reduced ethylene, yellowing, and cracking; maintained firmness and acidity. Combined with ethephon, it increased decay. Reduced skin phenolics and antioxidants; no effect on flesh. |
Soethe et al., 2021 [60] | Evaluated the effect of pre-harvest spraying with AVG and ethephon on fruit maturation of ‘Baigent’ apple trees grown under black anti-hail nets. | The experiment included control and five treatments combining different doses of AVG and ethephon applied at various pre-harvest intervals. Fruits were harvested at the commercial maturity date and again 14 days later. | AVG treatments delayed fruit yellowing and firmness loss, indicating slower maturation, while ethephon accelerated these processes. A single 125 mg L−1 AVG dose reduced red coloration, but split doses did not affect color, regardless of ethephon use or harvest timing. |
Bosančić et al., 2018 [61] | Reviewed publications to assess how crop type, cultivar, planting density, climate, and net type/color influence netting effects. | Meta-analysis of 26 peer-reviewed articles on apple orchards across 17 locations, using Main Effects Meta Principal Components Analysis (ME Meta-PCA) to assess effects of netting, cultivar, climate, and planting density. | Netting had minimal effect on yield but reduced red color and sweetness (TSS). Fruit firmness and acidity were slightly affected. Gala and Jonagold were the most stable; Pinova was the least suitable. Late cultivars like Braeburn and Cripps Pink showed earlier ripening under netting. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furuya, D.E.G.; Bolfe, É.L.; da Silveira, F.; Barbedo, J.G.A.; da Silva, T.L.; Romani, L.A.S.; Castanheiro, L.F.; Gebler, L. Hail Netting in Apple Orchards: Current Knowledge, Research Gaps, and Perspectives for Digital Agriculture. Climate 2025, 13, 203. https://doi.org/10.3390/cli13100203
Furuya DEG, Bolfe ÉL, da Silveira F, Barbedo JGA, da Silva TL, Romani LAS, Castanheiro LF, Gebler L. Hail Netting in Apple Orchards: Current Knowledge, Research Gaps, and Perspectives for Digital Agriculture. Climate. 2025; 13(10):203. https://doi.org/10.3390/cli13100203
Chicago/Turabian StyleFuruya, Danielle Elis Garcia, Édson Luis Bolfe, Franco da Silveira, Jayme Garcia Arnal Barbedo, Tamires Lima da Silva, Luciana Alvim Santos Romani, Letícia Ferrari Castanheiro, and Luciano Gebler. 2025. "Hail Netting in Apple Orchards: Current Knowledge, Research Gaps, and Perspectives for Digital Agriculture" Climate 13, no. 10: 203. https://doi.org/10.3390/cli13100203
APA StyleFuruya, D. E. G., Bolfe, É. L., da Silveira, F., Barbedo, J. G. A., da Silva, T. L., Romani, L. A. S., Castanheiro, L. F., & Gebler, L. (2025). Hail Netting in Apple Orchards: Current Knowledge, Research Gaps, and Perspectives for Digital Agriculture. Climate, 13(10), 203. https://doi.org/10.3390/cli13100203