The Impact of Climate Change on Energy Consumption on Small Tropical Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Consumption: Variation and Comparison
2.2. Data Sources and Analysis
2.3. Small Tropical Islands Context
Island | GDP/Inhabitant (EUR) | Mean Population (2010–2020) | Electricity/yr (Mean 2010–2020, GWh) | E/yr/Inhab (GWh/yr/Inhab) | E/yr/GDP/Inhab |
---|---|---|---|---|---|
La Réunion | 22,359 (in 2018) | 846,062 | 2876.7 | 0.00340 | 0.13 |
Mayotte | 10,600 (in 2021) | 238,409 | 303.2 | 0.00127 | 0.029 |
Saint-Martin | 16,572 (in 2014) | 34,965 | 187.3 | 0.00535 | 0.011 |
Saint-Barthelemy | 38,994 (in 2014) | 9628 | 124.4 | 0.0129 | 0.003 |
French Polynesia | 18,572 | 279,679 | 685.1 | 0.00245 | 0.037 |
Guadeloupe | 23,449 | 396,286 | 1730.6 | 0.00436 | 0.074 |
NC (Metallurgy) | 31,584 | 269,184 | 3062.9 | 0.01138 | 0.097 |
NC (No Metal.) | - | 269,184 | 799 | 0.00297 | 0.025 |
Martinique | 25,604 | 376,505 | 1562.8 | 0.00415 | 0.061 |
3. Results and Interpretation
3.1. Influence of the Number of Inhabitants on Energy Consumption
3.1.1. Demographic Growth on La Réunion Island
3.1.2. Demographic Impact on Small Tropical Islands
3.2. Influence of Socio-Economic Features on Energy Consumption
3.2.1. Social and Economic Characteristics of La Réunion Island
3.2.2. Influence of Wealth on Energy Consumption on Small Tropical Islands
3.2.3. Influence of Crises on Electricity Production
3.3. Climatic Impact on Electricity Production
3.3.1. Seasonal Influence and Extreme Hydro-Meteorological Events
3.3.2. Influence of Temperature on La Réunion Energy Production
4. Discussion
4.1. Climate and Electricity Production
4.2. Implications of Climate Warming on Tropical Areas’ Electricity Production
4.3. Literature Review on Temperature–Energy Variations
4.4. Limitation to the Anticipating Scenario
4.4.1. Socio-Economic Trends vs. Predictability
4.4.2. Data Collection Efforts
4.5. Adaptation to Climate Warming
4.5.1. Development, Wealth, and Energy Consumption
4.5.2. Techno-Solution vs. Socio-Solution
5. Conclusions and Perspectives
- (i) The destruction of electricity-producing infrastructures;
- (ii) The destruction of electricity-consuming infrastructures;
- (iii) The reduction of electricity-consuming activities;
- (iv) The destruction or damage to networks, such as roads or telecommunications;
- (v) The increased use of air conditioning;
- (vi) Lifestyle changes with air temperature and weather.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butcharet, S.H.M., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- O’Kane, T.J.; Frederiksen, J.S.; Frederiksen, C.S.; Horenko, I. Beyond the First Tipping Points of Southern Hemisphere Climate. Climate 2024, 12, 81. [Google Scholar] [CrossRef]
- Speer, M.; Hartigan, J.; Leslie, L. The Machine Learning Attribution of Quasi-Decadal Precipitation and Temperature Extremes in Southeastern Australia during the 1971–2022 Period. Climate 2024, 12, 75. [Google Scholar] [CrossRef]
- Latouche, S. La Megamachine: Raison Technoscientifique, Raison Economique et Mythe Du Progrès; Éditions La Découverte: Paris, France, 2004; 202p. [Google Scholar]
- Gargani, J. Crises Environnementales et Crises Socio-Economiques; L’Harmatan: Paris, France, 2016. [Google Scholar]
- IPCC. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science, Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Aller, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491. [Google Scholar] [CrossRef]
- Carvalho, F.S.; Meirelles, M.G.; Henriques, D.; Porteiro, J.; Navarro, P.; Vasconcelos, H.C. Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region. Climate 2023, 11, 238. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zaman, K.; Zhang, Y. The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries. Renew. Sustain. Energy Rev. 2016, 62, 468–477. [Google Scholar] [CrossRef]
- Fressoz, J.-B. Sans Transition Une Nouvelle Histoire De L’énergie; Seuil: Paris, France, 2024. [Google Scholar]
- Li, M.; Allinson, D.; He, M. Seasonal variation in household electricity demand: A comparison of monitored and synthetic daily load profiles. Energy Build. 2018, 179, 292–300. [Google Scholar] [CrossRef]
- Jones, R.V.; Fuertes, A.; Lomas, K.J. The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings. Renew. Sustain. Energy Rev. 2015, 43, 901–917. [Google Scholar] [CrossRef]
- Pettifor, H.; Agnew, M.; Wilson, C. A framework for measuring and modelling low-carbon lifestyles. Glob. Environ. Change 2023, 82, 102739. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q. An overview of energy consumption of the globalized world economy. Energy Policy 2011, 39, 5920–5928. [Google Scholar] [CrossRef]
- Syvitski, J.; Waters, C.N.; Day, J.; Milliman, J.D.; Summerhayes, C.; Steffen, W.; Zalasiewicz, J.; Cearreta, A.; Gałuszka, A.; Hajdas, I.; et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 2020, 1, 32. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Klitgaard, K.A. Energy and the Wealth of Nations: Understanding the Biophysical Economy; Springer Science & Business, Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- García, S.; Parejo, A.; Pers, E.; Guerr, J.I.; Biscarri, F.; León, C. A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level. Appl. Energy 2021, 287, 116547. [Google Scholar] [CrossRef]
- Halbrügge, S.; Schott, P.; Weibelzahl, M.; Buhl, H.U.; Fridgen, G.; Schöpf, M. How did the German and other European electricity systems react to the COVID-19 pandemic? Appl. Energy 2021, 285, 116370. [Google Scholar] [CrossRef] [PubMed]
- Bertram, C.; Luderer, G.; Creutzig, F.; Bauer, N.; Ueckerdt, F.; Malik, A.; Edenhofer, O. COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Change 2021, 11, 193–196. [Google Scholar] [CrossRef]
- Jiang, P.; Fan, Y.V.; Klemeš, J.J. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Appl. Energy 2021, 285, 116441. [Google Scholar] [CrossRef] [PubMed]
- Navon, A.; Machlev, R.; Carmon, D.; Onile, A.E.; Belikov, J.; Levron, Y. Effects of the COVID-19 Pandemic on Energy Systems and Electric Power Grids—A Review of the Challenges Ahead. Energies 2021, 14, 1056. [Google Scholar] [CrossRef]
- Gargani, J. Inequality growth and recovery monitoring after disaster using indicators based on energy production: Case study on Hurricane Irma at the Caribbean in 2017. Int. J. Disaster Risk Reduct. 2022, 79, 103166. [Google Scholar] [CrossRef]
- Gargani, J. Impact of major hurricanes on electricity energy production. Int. J. Disaster Risk Reduct. 2022, 67, 102643. [Google Scholar] [CrossRef]
- Akter, S. Australia’s Black Summer wildfires recovery: A difference-in-differences analysis using nightlights. Glob. Environ. Change 2023, 83, 102743. [Google Scholar] [CrossRef]
- Van der Borght, R.; Pallares-Barbera, M. Greening to shield: The impacts of extreme rainfall on economic activity in Latin American cities. Glob. Environ. Change 2024, 87, 102857. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Huang, R.; Lixin Tian, L. CO2 emissions inequality through the lens of developing countries. Appl. Energy 2021, 281, 116043. [Google Scholar] [CrossRef]
- Radanne, P.; Puiseux, L. L’énergie Dans L’economie. Alternatives Economiques; Syros: Paris, France, 1989; p. 176. [Google Scholar]
- Bonneuil, C.; Fressoz, J.-C. L’évènement Anthropocène: La Terre, L’histoire et Nous; Éditions du Seuil: Paris, France, 2013; p. 332. [Google Scholar]
- Sovacool, B.K.; Hess, D.J.; Cantoni, R.; Lee, D.; Brisbois, M.C.; Walnum, H.J.; Dale, R.F.; Rygg, B.J.; Korsnes, M.; Goswami, A.; et al. Conflicted transitions: Exploring the actors, tactics, and outcomes of social opposition against energy infrastructure. Glob. Environ. Change 2022, 73, 102473. [Google Scholar] [CrossRef]
- Blondeel, M.; Price, J.; Bradshaw, M.; Pye, S.; Dodds, P.; Kuzemko, C.; Bridge, G. Global energy scenarios: A geopolitical reality check. Glob. Environ. Change 2024, 84, 102781. [Google Scholar] [CrossRef]
- Bolt, J.; Inklaar, R.; de Jong, H.; van Zanden, J.L. Maddison Project Database, Version 2018. Rebasing ‘Maddison’: New Income Comparisons and the Shape of Long-Run Economic Development, 5. Available online: https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2018 (accessed on 9 September 2024).
- Prina, M.G.; Groppi, D.; Nastasi, B.; Garcia, D.A. Bottom-up energy system models applied to sustainable islands. Renew. Sustain. Energy Rev. 2021, 152, 111625. [Google Scholar] [CrossRef]
- Román, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS ONE 2019, 14, e0218883. [Google Scholar] [CrossRef] [PubMed]
- EDF. Systèmes Énergétiques Insulaires: Martinique: Bilan Prévisionnel de L’équilibre Offre/Demande D’électricité à Saint-Martin; Electricité De France: Paris, France, 2015; p. 15. [Google Scholar]
- EDF (Electricité De France). Systèmes Énergétiques Insulaires de Saint-Barthélemy: Bilan Prévisionnel de L’équilibre Offre/Demande D’électricité; Electricité De France: Paris, France, 2018; pp. 1–7. [Google Scholar]
- EDF (Electricité De France). Systèmes Énergétiques Insulaires de Saint-Martin: Bilan Prévisionnel de L’équilibre Offre/Demande D’électricité; Electricité De France: Paris, France, 2018; pp. 1–7. [Google Scholar]
- EDF. Bilan Prévisionnel de L’équilibre Offre-Demande D’électricité en Guadeloupe 2023–2028; Electricité De France: Paris, France, 2023; p. 14. [Google Scholar]
- EDF. Bilan Prévisionnel de L’équilibre Offre-Demande D’électricité en Martinique 2023–2028; Electricité De France: Paris, France, 2023; p. 13. [Google Scholar]
- EDF. Bilan Prévisionnel de L’équilibre Offre-Demande D’électricité à Saint-Barthélemy 2023–2028; Electricité De France: Paris, France, 2023; p. 17. [Google Scholar]
- EDF. Bilan Prévisionnel de L’équilibre Offre-Demande D’électricité à Saint-Martin 2023–2028; Electricité De France: Paris, France, 2023; p. 17. [Google Scholar]
- Eco-concept Caraïbes. Bilan Assises de l’Environnement et de l’Energie: Saint-Barthélemy; 2018; p. 53. Available online: https://agencedelenvironnement.fr/wp-content/uploads/2019/08/BILAN-des-Assises-1.pdf (accessed on 9 September 2024).
- Observatoire de L’énergie de La Réunion. Bilan Énergétique de L’île de La Réunion; 2011; p. 60. Available online: https://oer.spl-horizonreunion.com/sites/observatoire-energie-reunion/files/2021-02/ber_2011_technique.pdf (accessed on 9 September 2024).
- Observatoire de L’énergie de La Réunion. Bilan Énergétique 2012 de l‘île de La Réunion; 2013; p. 59. Available online: https://oer.spl-horizonreunion.com/sites/observatoire-energie-reunion/files/2021-02/ber_2012_technique.pdf (accessed on 9 September 2024).
- Observatoire de L’énergie de La Réunion. Etude de la Petite Climatisation, Période 2011–2012; 2013; p. 37. Available online: https://oer.spl-horizonreunion.com/sites/observatoire-energie-reunion/files/2021-02/oer_2013_etude_etat-de-la-petite-climatisation.pdf (accessed on 9 September 2024).
- Observatoire Polynésien de L’énergie. Bilan Énergetique de la Polynesie Française; 2017; p.83. Available online: https://www.service-public.pf/sde/wp-content/uploads/sites/15/2022/11/Bilan-OPE_2017_compressed-1.pdf (accessed on 9 September 2024).
- Observatoire Territorial de la Transition Écologique et Énergétique. Bilan Énergétique 2021 de la Martinique; 2022; p. 16. Available online: https://librairie.ademe.fr/societe-et-politiques-publiques/7736-bilan-energetique-martinique-2021.html (accessed on 9 September 2024).
- Pasquon, K.; Gargani, J.; Jouannic, G. Interaction nature/société de 1947 à 2017: Processus, caractéristiques et vulnérabilité à Saint-Martin. In Proceedings of the Vulnérabilité et Résilience Conférence, Université Versailles-Saint-Quentin, Guyancourt, France, 13–15 November 2019; pp. 1–14. [Google Scholar]
- Pasquon, K.; Jouannic, G.; Gargani, J.; Tran Duc Minh, C.; Crozier, D. Urban evolution and exposure to cyclonic hazard in Saint-Martin between 1954 and 2017. Vertigo 2022, 22, 35495. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Martin Annual Report 2019; IEDOM: Abymes, France, 2020; p. 104. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Martinique; IEDOM: Fort-de-France, France, 2023; p. 232. [Google Scholar]
- Chardon, J.-P.; Hartog, T. Saint-Barthelemy: Un choix et ses limites. Les Cah. D’outre-Mer 1995, 48, 261–276. [Google Scholar] [CrossRef]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Barthélemy Annual Report 2011; IEDOM: Abymes, France, 2012; p. 96. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Barthelemy Annual Report 2019; IEDOM: Abymes, France, 2020; p. 94. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Barthelemy Annual Report 2020; IEDOM: Abymes, France, 2021; p. 104. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Barthelemy Annual Report 2022; IEDOM: Abymes, France, 2023; p. 126. [Google Scholar]
- Artelia. REX Des Consommations D’électricité des Bâtiments Tertiaires à La Réunion et en Guadeloupe; Artelia: Saint-Ouen, France, 2020; p. 91. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Guadeloupe; IEDOM: Abymes, France, 2023; p. 217. [Google Scholar]
- ARER—Agence Régionale Energie Réunion. Rapport Etudes Consommations Energétiques des Ménages Réunionnais; ARER—Agence Régionale Energie Réunion: Saint-Pierre, France, 2010; p. 118. [Google Scholar]
- IEDOM. Le tourisme à La Réunion: Une activité qui peine à décoller. Note Expresse 2014, 293, 6. Available online: https://www.iedom.fr/IMG/pdf/ne293_eclairage_le_tourisme_a_la_reunion.pdf (accessed on 9 September 2024).
- IEOM. Rapport Annuel Economique De La Reunion 2022; IEOM: Saint-Denis, France, 2023; p. 215. [Google Scholar]
- Préfet de la Réunion. Programmation Pluriannuelle de L’énergie (PPE). Préfet de la Réunion: Saint-Denis, France, 2019; p. 11. [Google Scholar]
- Hachimi Alaoui, M.; Lemercier, E.; Palomares, E. Reconfigurations ethniques à Mayotte. Hommes Migr. 2013, 1304, 9. [Google Scholar] [CrossRef]
- Deves, M.; Lacassin, R.; Pécout, H.; Robert, G. Rick communication during seismo-volcanic crises: The example of Mayotte, France. Nat. Hazards Earth Syst. Sci. 2022, 22, 2001–2029. [Google Scholar] [CrossRef]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Mayotte; IEDOM: Mamoudzou, France, 2015; p. 205. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Mayotte; IEDOM: Mamoudzou, France, 2023; p. 196. Available online: https://www.iedom.fr/IMG/pdf/241191_iedom_ra_2023_bd_web_pap.pdf (accessed on 9 December 2024).
- Préfet de Mayotte. Programmation Pluriannuelle De L’energie De Mayotte; 2016; Saint-Denis, France, p. 152. Available online: https://portail.documentation.developpement-durable.gouv.fr/exl-php/document-affiche/mte_recherche_avancee/OUVRE_DOC/11248?fic=mpdouv00264444_s1.pdf (accessed on 9 September 2024).
- Tsimanda, F.I. Migrer pour un Bidonville. La Vulnérabilité Socio-Économique des Migrants Comoriens à Mayotte. Géoconfluences 2023. Available online: https://geoconfluences.ens-lyon.fr/informations-scientifiques/dossiersthematiques/inegalites/articles/migrants-comores-mayotte (accessed on 9 September 2024).
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Polynesie Française; IEDOM: Papeete, France, 2010; p. 231. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Rapport Annuel Polynésie Française; IEDOM: Papeete, France, 2023; p. 200. [Google Scholar]
- Meyer, T. Quelle Transition Energetique en Polynésie Française? Géoconfluences 2021, 15. Available online: https://geoconfluences.ens-lyon.fr/informations-scientifiques/dossiers-regionaux/la-france-desterritoires-en-mutation/articles-scientifiques/polynesie-transition-energetique (accessed on 9 September 2024).
- IEOM. Rapport Annuel Nouvelle-Calédonie; IEOM: Nouméa, France, 2013; p. 208. Available online: https://www.ieom.fr/IMG/pdf/ra2013_nouvelle-caledonie_avec_liens_sommaire.pdf (accessed on 9 September 2024).
- IEOM. Rapport Annuel Nouvelle-Calédonie; IEOM: Nouméa, France, 2016; p. 184. Available online: https://www.ieom.fr/IMG/pdf/ra2016_nouvelle-caledonie.pdf (accessed on 9 September 2024).
- IEOM. L’économie Verte en Nouvelle-Calédonie: Un Essor Mesuré Mais Prometteur; IEOM: Nouméa, France, 2019; Volume 2171, p. 10. Available online: https://www.ieom.fr/IMG/pdf/ne_eclairage_economie_verte_en_nouvelle-caledonie.pdf (accessed on 9 September 2024).
- IEOM. Rapport Annuel Nouvelle-Calédonie; IEOM: Nouméa, France, 2020; p. 216. Available online: https://www.ieom.fr/IMG/pdf/rapport_annuel_economique_2020_nouvelle-caledonie.pdf (accessed on 9 September 2024).
- IEOM. Rapport Annuel Economique de la Nouvelle-Calédonie 2022; IEOM: Nouméa, France, 2023; p. 224. Available online: https://www.ieom.fr/IMG/pdf/rapport_ieom_nc_2023_bat.pdf (accessed on 9 September 2024).
- Gargani, J. Modelling the mobility and dynamics of a large Tahitian landslide using runout distance. Geomorphology 2020, 370, 107354. [Google Scholar] [CrossRef]
- Gargani, J. Isostatic Adjustment, Vertical Motion Rate Variation and Potential Detection of Past Abrupt Mass Unloading. Geosciences 2022, 12, 302. [Google Scholar] [CrossRef]
- Gargani, J. Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides. Geosciences 2023, 13, 113. [Google Scholar] [CrossRef]
- Gargani, J. Relative sea level and coastal vertical movements in relation to volcano-tectonic processes. Geohazards 2024, 5, 329–349. [Google Scholar] [CrossRef]
- Syndicat des Énergies Renouvelables. Autonomie Energétique en 2030 Pour Les Outre-Mer et la Corse; Syndicat des Énergies Renouvelables: Paris, France, 2018; p. 12. [Google Scholar]
- INSEE. Dossier Complet, Commune de Saint-Martin (97127); Données locales; INSEE: Paris, France, 2024; p. 6. [Google Scholar]
- Heady, D.D.; Hodge, A. The effect of population growth on economic growth: A meta-regression analysis of the macroeconomic literature. Popul. Dev. Rev. 2009, 35, 221–248. [Google Scholar] [CrossRef]
- Piketty, T. Le Capital au 21e Siècle; Edition du Seuil: Paris, France, 2013; p. 970. [Google Scholar]
- Stiglitz, J.; Fitoussi, J.-P.; Durand, M. Beyond GDP: Measuring What Counts for Economic and Social Performance; Sciences Po: Paris, France, 2018. [Google Scholar]
- Aramendia, E.; Brockway, P.E.; Taylor, P.G.; Norman, J. Global energy consumption of the mineral mining industry: Exploring the historical perspective and future pathways to 2060. Glob. Environ. Change 2023, 83, 102745. [Google Scholar] [CrossRef]
- Salaün, M.; Trépied, B. Nouvelle-Calédonie, une histoire de la colère. Le Monde Diplomatique, July 2024; 20–21. [Google Scholar]
- IEDOM (Institut d’Emission des Départements d’Outre-Mer). Saint-Martin Annual Report 2022; IEDOM: Abymes, France, 2023; p. 144. [Google Scholar]
- Cangialosi, J.P.; Latto, A.S.; Berg, R. National Hurricane Center Tropical Cyclone Report Hurricane Irma 2018 (AL112017). Available online: http://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed on 9 September 2024).
- Jouannic, G.; Ameline, A.; Pasquon, K.; Navarro, O.; Tran Duc Minh, C.; Boudoukha, A.H.; Corbillé, M.A.; Crozier, D.; Fleury-Bahi, G.; Gargani, J.; et al. Recovery of the Island of Saint Martin after Hurricane Irma: An Interdisciplinary Perspective. Sustainability 2020, 12, 8585. [Google Scholar] [CrossRef]
- Kishore, N.; Marqués, D.; Mahmud, A.; Kiang, M.V.; Rodriguez, I.; Fuller, A.; Ebner, P.; Sorensen, C.; Racy, F.; Lemery, J.; et al. Mortality in Puerto Rico after Hurricane Maria. N. Engl. J. Med. 2018, 379, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.; Elliott, J.R. Damages done: The longitudinal impacts of natural hazards on wealth inequality in the United States. Soc. Probl. 2019, 66, 448–467. [Google Scholar] [CrossRef]
- Blaikie, P.M.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability, and Disasters; Routledge: London, UK; New York, NY, USA, 1994; 284p. [Google Scholar]
- Cutter, S.L. Vulnerability to environmental hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Pichler, A.; Striessnig, E. Differential vulnerability to hurricanes in Cuba, Haiti, and the Dominican Republic: The contribution of education. Ecol. Soc. 2013, 18, 31. [Google Scholar] [CrossRef]
- Rubin, O.; Rossing, T. National and Local Vulnerability to Climate-Related Disasters in Latin America: The Role of Social Asset-Based Adaptation. Bull. Lat. Am. Res. 2012, 31, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y. Amplification of Extreme Hot Temperatures over Recent Decades. Climate 2023, 11, 42. [Google Scholar] [CrossRef]
- Akhmat, G.; Zaman, K.; Shukui, T.; Sajjad, F. Does energy consumption contribute to climate change ? Evidence from major regions of the world. Renew. Sustain. Energy Rev. 2014, 36, 123–134. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Keßler, C.; Quintero Gonzalez, R.; Schmeltz, M. Urban Growth and Heat in Tropical Climates. Front. Ecol. Evol. 2021, 9, 616626. [Google Scholar] [CrossRef]
- Ang, B.W.; Wang, H.; Ma, X. Climatic influence on electricity consumption: The case of Singapore and Hong Kong. Energy 2017, 127, 534–543. [Google Scholar] [CrossRef]
- Furszyfer Del Rio, J.; Furszyfer Del Rio, D.D.; Sovacool, B.K.; Griffiths, S. The demographics of energy and mobility poverty: Assessing equity and justice in Ireland, Mexico, and the United Arab Emirates. Glob. Environ. Change 2023, 81, 102703. [Google Scholar] [CrossRef]
- De Cian, E.; Sue Wing, I. Global energy consumption in a warming climate. Environ. Resour. Econ. 2019, 72, 365–410. [Google Scholar] [CrossRef]
- Fung, W.Y.; Lam, K.S.; Hung, W.T.; Pang, S.W.; Lee, Y.L. Impact of Urban temperature on energy consumption of Hong Kong. Energy 2006, 71, 2623–2637. [Google Scholar] [CrossRef]
- Hou, Y.-L.; Mu, H.-Z.; Dong, G.-T.; Shi, J. Influence of urban temperature on the electricity consumption of Shanghai. Adv. Clim. Change Res. 2014, 5, 76–80. [Google Scholar]
- Zhang, C.; Miao, H.; Mi, Z. Climate impacts temperature and electricity consumption. Nat. Hazards 2019, 99, 1259–1275. [Google Scholar] [CrossRef]
- Jocanonic, S.; Savic, S.; Bojic, M.; Djordjevic, A. The impact of the mean daily air temperature change on electricity consumption. Energy 2015, 88, 604–609. [Google Scholar]
- Al-Zayer, J.; Al-Ibrahil, A.A. Modelling the impact of temperature on electricity consumption in the Eastern Province of Saudi Arabian. J. Forecast. 1996, 15, 97–106. [Google Scholar] [CrossRef]
- Pablo-Romero, M.d.P.; Pozo-Barajas, R.; Sanchez-Rivas, J. Tourism and temperature effects on the electricity consumption of the hospitality sector. J. Clean. Prod. 2019, 240, 118168. [Google Scholar] [CrossRef]
- Huang, K.-Y.; Chiu, Y.-H.; Chang, T.-H.; Lin, T.-Y. The effect of extreme temperature on electricity consumption of air pollution, and gross economic product. Energy Environ. 2024, 35, 371–394. [Google Scholar] [CrossRef]
- Papakostas, K.; Macromatis, T.; Kyriakis, N. Impact of the ambient temperature rise on the energy consumption for heating and cooling residential buildings of Greece. Renew. Energy 2010, 35, 1376–1379. [Google Scholar] [CrossRef]
- Pilli-Sihvola, K.; Aatola, P.; Ollikainen, M.; Tuomenvirta, H. Climate change and electricity consumption-Witnessing increasing or decreasing use and costs? Energy Policy 2010, 38, 2409–2419. [Google Scholar] [CrossRef]
- Bessec, M.; Fouquau, J. The non-linear between electricity consumption and temperature in Europe: A threshold panel approach. Energy Econ. 2008, 30, 2707–2721. [Google Scholar] [CrossRef]
- Santagata, D.M.; Cristesona, P.; Eossler, E.C.; Gomez, D.R. Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013). Energy Policy 2017, 106, 404–414. [Google Scholar] [CrossRef]
- Franco, G.; Sanstag, A.H. Climate change and electricity demand in California. Clim. Change 2008, 87, 139–151. [Google Scholar] [CrossRef]
- Howarth, N.; Odnoletkova Alsechri, T.; Almadani, A.; Lanza, A.; Patsek, T. Staying cool in a warming climate: Temperature, electricity and air conditioning in Saudi Arabia. Climate 2024, 8, 4. [Google Scholar] [CrossRef]
- Davis, L.W.; Gertler, P.L. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef] [PubMed]
- Sadiq Okoh, A.; Chidi Onuoha, M. Immediate and future challenges of using electric vehicles for promoting energy efficiency in Africa’s clean energy transition. Glob. Environ. Change 2024, 84, 102789. [Google Scholar] [CrossRef]
- Tariq, G.; Sun, H.; Ali, I.; Pasha, A.A.; Khan, M.S.; Rahman, M.M.; Mohamed, A.; Shah, Q. Influence of green technology, green energy consumption, energy efficiency, trade, economic development and FDI on climate change in South Asia. Sci. Rep. 2022, 12, 16376. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Su, C.-W.; Moldovan, N.-C.; Umar, M. Energy consumption within policy uncertainty: Considering the climate and economic factors. Renew. Energy 2023, 208, 567–576. [Google Scholar] [CrossRef]
- Gargani, J.; Jouannic, G. Les liens entre Société, Nature et Technique durant les derniers 200 ans: Analyse dans deux vallées françaises. VertigO 2015, 15, 2015. [Google Scholar]
- Gargani, J. De la conception de la nature à la conception de la technique. Sociétés 2016, 131, 19–39. [Google Scholar] [CrossRef]
- Zheng, H.; Wood, R.; Moran, D.; Feng, K.; Tisserant, A.; Jiang, M.; Hertwich, E.G. Rising carbon inequality and its driving factors from 2005 to 2015. Glob. Environ. Change 2023, 82, 102704. [Google Scholar] [CrossRef]
- Martinelli, A.; Carlucci, F.; Fiorito, F. On the Role of the Building Envelope on the Urban Heat Island Mitigation and Building Energy Performance in Mediterranean Cities: A Case Study in Southern Italy. Climate 2024, 12, 113. [Google Scholar] [CrossRef]
- Natch, T.; Pratter, R.; Ganglbauer, J.; Schibline, A.; Aguayo, A.; Fragkos, P.; Zisarou, E. Modeling Approaches for Residential Energy Consumption: A Literature Review. Climate 2023, 11, 184. [Google Scholar] [CrossRef]
- Aldossary, N.; Rezgui, Y.; Kwan, A. Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis. Appl. Energy 2014, 114, 353–365. [Google Scholar] [CrossRef]
- Abrahamse, W.; Shwom, R. Domestic energy consumption and climate change mitigation. WIREs Clim. Change 2018, 9, e525. [Google Scholar] [CrossRef]
Year | Fossil Energy (ktep) | Renewable Energy (ktep) | Total Primary Energy (GWh) | Electricity Production (GWh) |
---|---|---|---|---|
2000 | 816.1 | 156.7 | 11,314 | 1758.1 |
2005 | 1043.8 | 149 | 13,872 | 2270.6 |
2010 | 1217 | 174.2 | 16,180 | 2698.8 |
2015 | 1214.8 | 196.5 | 16,415 | 2890.5 |
2017 | 1277.5 | 189.5 | 17,061 | 2986.0 |
2018 | 1256 | 186.7 | 16,779 | 2969.7 |
2020 | 1191 | 177.7 | 15,918 | 2878.5 |
2022 | 1227.4 | 203.2 | 16,638 | 3012.0 |
Year | Extreme Events | Precipitation Maximum (mm) | Mean Annual Precipitation Variation (Normalized by the Mean Value Obtained Between 1981 and 2010) | Mean Annual Temperature Variation (Normalized by the Mean Value Obtained Between 1981 and 2010) |
---|---|---|---|---|
2022 | Cyclone Batsirai | 584 mm in 4 d, February | +5% | +0.1 °C |
2021 | −5% | +0.65 °C | ||
2020 | −25% | +0.2 °C | ||
2019 | −21% | +1.2 °C | ||
2018 | Cyclone Ava Cycl. Dumazile | 558 mm in 6 d, January 541 mm in 4 d, March 176 mm in 1 h, April | +40% | +0.65 °C |
2017 | −8% | +0.9 °C |
Month | % of Electricity Production E Increase | Temperature T Increase (in °C) | Uncertainty on E Variation (%) | Uncertainty on T |
---|---|---|---|---|
1—January | 15 | 5 | 5 | 0.5 |
2—February | 10 | 5 | 2.5 | 0.5 |
3—March | 17.5 | 4.5 | 5 | 0.5 |
4—April | 12.5 | 3.5 | 3 | 0.5 |
5—May | 4 | 1.5 | 1 | 0.5 |
6—June | 0.5 | 0.25 | 3 | 0.5 |
7—July | 4 | 0.5 | 1 | 0.5 |
8—August | 5 | 1 | 0.5 | 0.5 |
9—September | 4 | 1.5 | 0.5 | 0.5 |
10—October | 9 | 2.5 | 4 | 0.5 |
11—November | 10 | 3.5 | 4 | 0.5 |
12—December | 17.5 | 4.5 | 5 | 0.5 |
Event | Energy Consumption | Example |
---|---|---|
Cyclone | Decrease | Irma, 2017, Saint-Martin Ava and Dumazile, 2018, La Réunion |
Temperature increase > 26 °C | Increase | La Réunion |
Migration out | Decrease | Saint-Martin, 2017 |
Population increase | Increase | Small tropical islands |
Wealth increase | Increase | Small tropical islands |
Epidemic crisis | Decrease | COVID-19, Chikungunya |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargani, J. The Impact of Climate Change on Energy Consumption on Small Tropical Islands. Climate 2024, 12, 227. https://doi.org/10.3390/cli12120227
Gargani J. The Impact of Climate Change on Energy Consumption on Small Tropical Islands. Climate. 2024; 12(12):227. https://doi.org/10.3390/cli12120227
Chicago/Turabian StyleGargani, Julien. 2024. "The Impact of Climate Change on Energy Consumption on Small Tropical Islands" Climate 12, no. 12: 227. https://doi.org/10.3390/cli12120227
APA StyleGargani, J. (2024). The Impact of Climate Change on Energy Consumption on Small Tropical Islands. Climate, 12(12), 227. https://doi.org/10.3390/cli12120227