Estimation and Validation of Snowmelt Runoff Using Degree Day Method in Northwestern Himalayas
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Meteorological and Hydrological Data
2.2.2. Topography and Snow Cover Dataset by Remote Sensing
2.3. Methodology
3. Results
3.1. Basin Characteristics
3.2. Snow Cover Area (SCA)
3.3. Model Calibration
3.4. Validation of Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 2015, 10, 114016. [Google Scholar] [CrossRef]
- Cherry, J.; Cullen, H.; Visbeck, M.; Small, A.; Uvo, C. Impacts of the North Atlantic Oscillation on Scandinavian Hydropower Production and Energy Markets. Water Resour. Manag. 2005, 19, 673–691. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Thayyen, R.J.; Saraf, A.K. Assessment of Recent glacier changes and its controlling factors from 1976 to 2011 in Baspa Basin, Western Himalaya. Arctic Antarct. Alp. Res. 2017, 49, 621–647. [Google Scholar] [CrossRef]
- Mishra, S.K.; Chaudhary, A.; Shrestha, R.K.; Pandey, A.; Lal, M. Experimental Verification of the effect of slope and land use on SCS runoff curve number. Water Resour. Manag. 2014, 28, 3407–3416. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of himalayan glaciers. Am. Assoc. Adv. Sci. 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Shukla, S.; Kansal, M.L.; Jain, S.K. Snow cover area variability assessment in the upper part of the Satluj River Basin in India. Geocarto Int. 2017, 32, 1285–1306. [Google Scholar] [CrossRef]
- Singh, S.; Sood, V.; Prashar, S.; Kaur, R. Response of topographic control on nearest-neighbor diffusion-based pan-sharpening using multispectral MODIS and AWiFS satellite dataset. Arab. J. Geosci. 2020, 13, 668. [Google Scholar] [CrossRef]
- Shafiq, M.U.; Ahmed, P.; Islam, Z.U.; Joshi, P.K.; Bhat, W.A. Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto Int. 2019, 34, 688–702. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Guo, W.; Liu, S.; Immerzeel, W.; Shrestha, B. The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010. Int. J. Water Resour. Dev. 2015, 31, 161–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, W.; Chu, H.; Cheng, W.; Zhao, Y. Uncertainty analysis of hydrological model parameters based on the bootstrap method: A case study of the SWAT model applied to the Dongliao River Watershed, Jilin Province, Northeastern China. Sci. China Technol. Sci. 2014, 57, 219–229. [Google Scholar] [CrossRef]
- Chakraborty, A.; Joshi, P.; Sachdeva, K. Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecol. Eng. 2016, 97, 593–609. [Google Scholar] [CrossRef]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Barsugli, J.J.; Ray, A.J.; Livneh, B.; Dewes, C.F.; Heldmyer, A.; Rangwala, I.; Guinotte, J.M.; Torbit, S. Projections of Mountain Snowpack Loss for Wolverine Denning Elevations in the Rocky Mountains. Earth’s Futur. 2020, 8, e2020EF001537. [Google Scholar] [CrossRef]
- Sunita; Gupta, P.K.; Petropoulos, G.P.; Gusain, H.S.; Sood, V.; Gupta, D.K.; Singh, S.; Singh, A.K. Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets. Sensors 2023, 23, 8387. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Jacob, N.; Deshpande, R.D. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: An isotopic approach. Isot. Environ. Health Stud. 2017, 53, 18–35. [Google Scholar] [CrossRef]
- Brown, J.R.; Moise, A.F.; Colman, R.A. Projected increases in daily to decadal variability of Asian-Australian monsoon rainfall. Geophys. Res. Lett. 2017, 44, 5683–5690. [Google Scholar] [CrossRef]
- Molotch, N.P.; Margulis, S.A. Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison. Adv. Water Resour. 2008, 31, 1503–1514. [Google Scholar] [CrossRef]
- Singh, V.; Goyal, M.K. Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmospheric Res. 2016, 167, 34–60. [Google Scholar] [CrossRef]
- Singh, V.; Goyal, M.K. Curve number modifications and parameterization sensitivity analysis for reducing model uncertainty in simulated and projected streamflows in a Himalayan catchment. Ecol. Eng. 2017, 108, 17–29. [Google Scholar] [CrossRef]
- Singh, V.; Jain, S.K.; Goyal, M.K. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stoch. Environ. Res. Risk Assess. 2021, 35, 2067–2092. [Google Scholar] [CrossRef]
- Das, S. Performance of region-of-influence approach of frequency analysis of extreme rainfall in monsoon climate conditions. Int. J. Clim. 2017, 37, 612–623. [Google Scholar] [CrossRef]
- Ahmed, J.S.; Buizza, R.; Dell’Acqua, M.; Demissie, T.; Pè, M.E. Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia. Meteorol. Atmos. Phys. 2024, 136, 17. [Google Scholar] [CrossRef]
- Engelhardt, M.; Leclercq, P.; Eidhammer, T.; Kumar, P.; Landgren, O.; Rasmussen, R. Meltwater runoff in a changing climate (1951–2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Ann. Glaciol. 2017, 58, 47–58. [Google Scholar] [CrossRef]
- Lute, A.C.; Abatzoglou, J.T.; Hegewisch, K.C. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res. 2015, 51, 960–972. [Google Scholar] [CrossRef]
- Huss, M.; Zurich, E. Present and future cotribution of glacier storage change to runoff from macroscale drainage basins in Europe Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 2011, 47, 7511. [Google Scholar] [CrossRef]
- Kumar, R.; Manzoor, S. Mahrukh Modelling of snowmelt runoff across the Himalayan Region. J. Agrometeorol. 2022, 24, 38–41. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of process-based and temperature-index snowmelt modeling in SWAT. Water Resour. Manag. 2009, 24, 1065–1088. [Google Scholar] [CrossRef]
- Walter, M.T.; Brooks, E.S.; McCool, D.K.; King, L.G.; Molnau, M.; Boll, J. Process-based snowmelt modeling: Does it require more input data than temperature-index modeling? J. Hydrol. 2005, 300, 65–75. [Google Scholar] [CrossRef]
- Shakoor, A.; Ejaz, N. Flow Analysis at the Snow Covered High Altitude Catchment via Distributed Energy Balance Modeling. Sci. Rep. 2019, 9, 4783. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Tuo, Y.; Marcolini, G.; Disse, M.; Chiogna, G. A multi-objective approach to improve SWAT model calibration in alpine catchments. J. Hydrol. 2018, 559, 347–360. [Google Scholar] [CrossRef]
- Wei, P.; Ouyang, W.; Gao, X.; Hao, F.; Hao, Z.; Liu, H. Modified control strategies for critical source area of nitrogen (CSAN) in a typical freeze-thaw watershed. J. Hydrol. 2017, 551, 518–531. [Google Scholar] [CrossRef]
- Neupane, R.P.; White, J.D.; Alexander, S.E. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation. J. Hydrol. 2015, 525, 216–230. [Google Scholar] [CrossRef]
- Abbas, J.; Aman, J.; Nurunnabi, M.; Bano, S. The impact of social media on learning behavior for sustainable education: Evidence of students from selected universities in Pakistan. Sustainability 2019, 11, 1683. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Tian, Y.; Peters-Lidard, C.D.; Hossain, F. Tracing hydrologic model simulation error as a function of satellite rainfall estimation bias components and land use and land cover conditions. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, part 1: Algorithm description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef]
- Sreenivasulu, V.; Bhaskar, P.U. Estimation of Catchment Characteristics using Remote Sensing and GIS Techniques. J. Eng. Sci. Technol. 2010, 2, 7763–7770. [Google Scholar]
- Hofierka, J.; Onačillová, K. Estimating Visible Band Albedo from Aerial Orthophotographs in Urban Areas. Remote Sens. 2022, 14, 164. [Google Scholar] [CrossRef]
- Khan, F.; Das, B.; Mishra, R.K. An automated land surface temperature modelling tool box designed using spatial technique for ArcGIS. Earth Sci. Inform. 2022, 15, 725–733. [Google Scholar] [CrossRef]
- Prasad, V.H.; Mahadev, R.H. Estimating Actual Evapotranspiration Using RS and GIS. In Proceedings of the Asia-Pacific Remote Sensing Symposium, Goa, India, 11 December 2006; p. 64110J. [Google Scholar]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour. Manag. 2009, 23, 71–83. [Google Scholar] [CrossRef]
- Aggarwal, S.P.; Thakur, P.K.; Nikam, B.R.; Garg, V. Integrated Approach for Snowmelt Run-Off Estimation Using Temperature Index Model, Remote Sensing and GIS. Available online: https://www.researchgate.net/publication/260184911 (accessed on 14 October 2024).
- Azam, M.F.; Wagnon, P.; Vincent, C.; Ramanathan, A.; Kumar, N.; Srivastava, S.; Pottakkal, J.; Chevallier, P. Snow and ice melt contributions in a highly glacierized catchment of Chhota Shigri Glacier (India) over the last five decades. J. Hydrol. 2019, 574, 760–773. [Google Scholar] [CrossRef]
- Central Pollution Control Board (CPCB). Assessment of Impact of Lockdown on Water Quality of Major Rivers. Moni-toring of Indian National Aquatic Resources Series (MINARS); CPCB: New Delhi, India, 2020. [Google Scholar]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Rango, A. Application de la télédétection spatiale à l’hydrologie nivale. Hydrol. Sci. J. 1996, 41, 477–494. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt Runoff Model (SRM) User’s Manual Agricultural Experiment Station • Special Report 100 College of Agriculture and Home Economics; Department of Geography, University of Berne: Bern, Switzerland, 1998. [Google Scholar]
- Muhammad, S.; Thapa, A. An improved Terra/Aqua MODIS snow-cover and RGI6.0 glacier combined product (MOYDGL06*) for the High Mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. Int. J. Remote Sens. 2008, 29, 5863–5878. [Google Scholar] [CrossRef]
Zones of Elevation | Elevation Range (m) | Area of Zone (km2) (%) | Hypsometric Mean Elevation (m) |
---|---|---|---|
1 | 853–1600 | 414.21 (7.69%) | 1359.8 |
2 | 1600–2300 | 1149.10 (21.34%) | 2031.9 |
3 | 2300–3100 | 1219.34 (22.64%) | 2749.5 |
4 | 3100–3900 | 908.54 (16.87%) | 3518.6 |
5 | 3900–4600 | 1107.57 (20.57%) | 4310.6 |
6 | 4600–5400 | 571.47 (10.64%) | 5016.7 |
7 | 5400–6582 | 13.46 (0.25%) | 5608.7 |
S No | Type of Data | Resolution (m) | Availability | Acquired from | Description |
---|---|---|---|---|---|
1 | MODIS data | 500 | 8 days | PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.901821 accessed on 11 November 2020 | Snow cover area |
2 | Digital elevation model | 500 | 11 days | USGS Earth Explorer https://earthexplorer.usgs.gov/ accessed on 24 January 2021 | Aspect, elevation, and slope |
3 | Temperature | 0.25° × 0.25° | Daily | Copernicus (ERA5) https://cds.climate.copernicus.eu/ accessed on 14 October 2024 | Average temperature |
4 | Rainfall | 0.25° × 0.25° | Daily | Copernicus (ERA5) https://cds.climate.copernicus.eu/ accessed on 14 October 2024 | Average daily rainfall |
Period | Runoff Volume (106 m3) (Measured) | Runoff Volume (106 m3) (Computed) | Average Runoff (m3/s) (Measured) | Average Runoff (m3/s) (Computed) | Volume Difference % | Coefficient of Determination, R2 |
---|---|---|---|---|---|---|
2013 | 6931.47 | 6762.97 | 150.43 | 140.65 | 2.43 | 0.709 |
2014 | 7653.12 | 7540.8 | 210.52 | 199.42 | 1.47 | 0.734 |
2015 | 7871.52 | 7581.92 | 249.60 | 240.421 | 3.68 | 0.725 |
2016 | 6904.56 | 8011.66 | 218.34 | 253.35 | −16.03 | 0.740 |
2017 | 7315.83 | 6658.72 | 232.32 | 211.74 | 8.98 | 0.797 |
2018 | 6931.37 | 6624.71 | 219.79 | 210.06 | 4.42 | 0.737 |
2019 | 7680.36 | 6091.71 | 243.54 | 193.17 | 20.68 | 0.748 |
2020 | 6639.69 | 5859.20 | 209.96 | 185.29 | 11.75 | 0.795 |
2021 | 6018.88 | 5653.06 | 190.86 | 179.26 | 6.08 | 0.731 |
2022 | 7146.07 | 6805.06 | 226.60 | 215.79 | 4.77 | 0.704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunita; Sood, V.; Singh, S.; Gupta, P.K.; Gusain, H.S.; Tiwari, R.K.; Khajuria, V.; Singh, D. Estimation and Validation of Snowmelt Runoff Using Degree Day Method in Northwestern Himalayas. Climate 2024, 12, 200. https://doi.org/10.3390/cli12120200
Sunita, Sood V, Singh S, Gupta PK, Gusain HS, Tiwari RK, Khajuria V, Singh D. Estimation and Validation of Snowmelt Runoff Using Degree Day Method in Northwestern Himalayas. Climate. 2024; 12(12):200. https://doi.org/10.3390/cli12120200
Chicago/Turabian StyleSunita, Vishakha Sood, Sartajvir Singh, Pardeep Kumar Gupta, Hemendra Singh Gusain, Reet Kamal Tiwari, Varun Khajuria, and Daljit Singh. 2024. "Estimation and Validation of Snowmelt Runoff Using Degree Day Method in Northwestern Himalayas" Climate 12, no. 12: 200. https://doi.org/10.3390/cli12120200
APA StyleSunita, Sood, V., Singh, S., Gupta, P. K., Gusain, H. S., Tiwari, R. K., Khajuria, V., & Singh, D. (2024). Estimation and Validation of Snowmelt Runoff Using Degree Day Method in Northwestern Himalayas. Climate, 12(12), 200. https://doi.org/10.3390/cli12120200