An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Derivation of Allometric Equation
log Y = log a + b log X
2.3. Measurement of Net Primary Productivity (NPP)
2.4. Measurement of Soil Respiration
2.5. Calculation of Carbon Absorption Capacity
2.6. Statistical Test of Allometric Equation
3. Results
3.1. Verification of the Fitness of the Derived Regression
3.2. Net Primary Productivity (NPP) of S. pierotii Community
3.3. Seasonal Changes in Soil Respiration and Amount of Annual Soil Respiration
3.4. NEP of S. pierotii Community
4. Discussion
4.1. Carbon Dynamics in Riparian Forest
Scientific Name | NPP (tonC·ha−1·yr−1) | NEP (tonC·ha−1·yr−1) | Reference |
---|---|---|---|
Salix pierotii | 40.8 | 33.6 | Observed data |
S. pierotii | 11.2 | 9.2 | [95] |
S. pierotii | 11.3 | [96] | |
Salix chaenomeloides | 5.1 | [97] | |
Salix triandra L. subsp. nipponica | 1.2 | [97] | |
S. triandra L. subsp. nipponica | 17.6 | [98] | |
S. triandra L. subsp. nipponica | 23.9 | [99] | |
Salix spp. | 8.4 | [60] |
4.2. Soil Respiration of Riparian Forests
4.3. Preparation to Realize Carbon Neutrality
4.4. Ecological Restoration as a Strategy to Ensure New Carbon Sinks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; Mcinnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX Report. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012; p. 12566. [Google Scholar]
- What Is Carbon Neutrality and How Can It Be Achieved by 2050? Available online: https://www.europarl.europa.eu/topics/en/article/20190926STO62270/what-is-carbon-neutrality-and-how-can-it-be-achieved-by-2050 (accessed on 21 September 2024).
- The Government of the Republic of Korea. 2050 Carbon Neutral Strategy of the Republic of Korea Towards a Sustainable and Green Society; The Government of the Republic of Korea: Seoul, Republic of Korea, 2020.
- McLaughlin, H.; Littlefield, A.A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, M.D.; Kim, J.; Griffiths, S. Carbon Capture Utilization and Storage in Review: Sociotechnical Implications for a Carbon Reliant World. Renew. Sustain. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- Prajapati, S.; Choudhary, S.; Kumar, V.; Dayal, P.; Srivastava, R.; Gairola, A.; Borate, R. Carbon Sequestration: A Key Strategy for Climate Change Mitigation towards a Sustainable Future. Emrg. Trnd. Clim. Chng. 2023, 2, 1–14. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; ISBN 978-1-00-915795-7. [Google Scholar]
- Nunes; Meireles, C.; Gomes, P.; Ribeiro, A. Forest Contribution to Climate Change Mitigation: Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef]
- IUCN. International Union for Conservation of Nature Annual Report 2016; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Prentice, I.; Farquhar, G.; Fasham, M.; Goulden, M.; Heimann, M.; Jaramillo, V.; Kheshgi, H.; Le Quéré, C.; Scholes, R.; Wallace, D. The Carbon Cycle and Atmospheric Carbon Dioxide. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 183–237. ISBN 978-0-521-80767-8. [Google Scholar]
- Joo, S.J.; Park, M.-S.; Kim, G.-S.; Lee, C.S. CO2 Flux in a Cool-Temperate Deciduous Forest (Quercus Mongolica) of Mt. Nam in Seoul, Korea. J. Ecol. Field Biol. 2011, 34, 95–106. [Google Scholar] [CrossRef]
- Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J.R. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Kim, G.S.; Joo, S.J.; Lee, C.S. Seasonal Variation of Soil Respiration in the Mongolian Oak (Quercus Mongolica Fisch. Ex Ledeb). For. Cool. Temp. Zone Korea. For. 2020, 11, 984. [Google Scholar]
- Kim, G.S.; Kim, A.R.; Lim, B.S.; Seol, J.; An, J.H.; Lim, C.H.; Joo, S.J.; Lee, C.S. Assessment of the Carbon Budget of Local Governments in South Korea. Atmosphere 2022, 13, 342. [Google Scholar] [CrossRef]
- Nayak, N.; Mehrotra, R.; Mehrotra, S. Carbon Biosequestration Strategies: A Review. Carbon Capture Sci. Technol. 2022, 4, 100065. [Google Scholar] [CrossRef]
- Liu, M.; Bai, X.; Tan, Q.; Luo, G.; Zhao, C.; Wu, L.; Chen, F.; Li, C.; Yang, Y.; Ran, C.; et al. Climate Change Enhanced the Positive Contribution of Human Activities to Net Ecosystem Productivity from 1983 to 2018. Front. Ecol. Evol. 2023, 10, 1101135. [Google Scholar] [CrossRef]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; los Rios-Escalante, P.R.D.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; a Mini Review. J. King Saud Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Rackley, S.A.; Ming, T.; Li, W.; Tyka, M.; Sewel, A.; Clery, D.; Dowson, G.; Styring, P.; Andrews, G.; McCord, S.; et al. Negative Emissions Technologies for Climate Change Mitigation; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-823167-8. [Google Scholar]
- Nakane, K. Quantitative Evaluation of Atmospheric CO2 Sink into Forest Soils from the Tropics to the Boreal Zone during the Past Three Decades. Ecol. Res. 2001, 16, 671–685. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Miri, T.; Obileke, K.; Hart, A.; Anumudu, C.; Al-Sharify, Z.T. Minimizing Carbon Footprint via Microalgae as a Biological Capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Heimann, M.; Reichstein, M. Terrestrial Ecosystem Carbon Dynamics and Climate Feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef]
- Yang, W.; Min, Z.; Yang, M.; Yan, J. Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development-An Overview. Int. J. Environ. Res. Public Health 2022, 19, 14109. [Google Scholar] [CrossRef]
- Barbosa, V.; Damasceno da Silva, R.M.; Dias, M.; Castelhano, F.; Roig, H.; Requia, W. Ecosystem Services Provided by Green Areas and Their Implications for Human Health in Brazil. Ecol. Indic. 2024, 161, 111975. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ostwald, M. Methods for Estimating Above-Ground Biomass. In Carbon Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Ravindranath, N.H., Ostwald, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 113–147. ISBN 978-1-4020-6547-7. [Google Scholar]
- Lal, R. Sequestering Atmospheric Carbon Dioxide. Crit. Rev. Plant Sci. 2009, 28, 90–96. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
- Qubaja, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Partitioning of Canopy and Soil CO2 Fluxes in a Pine Forest at the Dry Timberline across a 13-Year Observation Period. Biogeosciences 2020, 17, 699–714. [Google Scholar] [CrossRef]
- Global Carbon Project; Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Yanbin, H.; Zhang, Q.; Hu, S.; Xiao, G.; Chen, X.; Wang, J.; Qi, Y.; Zhang, L.; Han, L. Research Progress and Prospects of Ecosystem Carbon Sequestration under Climate Change (1992–2022). Ecol. Indic. 2022, 145, 109656. [Google Scholar] [CrossRef]
- Mitsch, W.; Bernal, B.; Nahlik, A.; Mander, Ü.; Zhang, L.; Anderson, C.; Jørgensen, S.E.; Brix, H. Wetlands, Carbon, and Climate Change. Landsc. Ecol. 2012, 28, 583–597. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Fennessy, M.S. Carbon Storage in US Wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef]
- Han, L.; Wan, Z.; Guo, Y.; Song, C.; Jin, S.; Zuo, Y. Estimation of Soil Organic Carbon Storage in Palustrine Wetlands, China. Int. J. Environ. Res. Public Health 2020, 17, 4646. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.A.; Bowman, K.W.; Lee, M.; Turner, A.J.; Schroeder, R.; Worden, J.R.; Weidner, R.; McDonald, K.C.; Jacob, D.J. A Global Wetland Methane Emissions and Uncertainty Dataset for Atmospheric Chemical Transport Models (WetCHARTs Version 1.0). Geosci. Model Dev. 2017, 10, 2141–2156. [Google Scholar] [CrossRef]
- Bousquet, P.; Ringeval, B.; Pison, I.; Dlugokencky, E.J.; Brunke, E.-G.; Carouge, C.; Chevallier, F.; Fortems-Cheiney, A.; Frankenberg, C.; Hauglustaine, D.A.; et al. Source Attribution of the Changes in Atmospheric Methane for 2006–2008. Atmos. Chem. Phys. 2011, 11, 3689–3700. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Tang, S.; Liu, J. Spatial Distribution of Soil Organic Carbon in the Zoige Alpine Wetland, Northeastern Qinghai–Tibet Plateau. Catena 2016, 144, 102–108. [Google Scholar] [CrossRef]
- Kolka, R.; Trettin, C.; Windham-Myers, L. The Importance of Wetland Carbon Dynamics to Society. In Wetland Carbon and Environmental Management; American Geophysical Union (AGU): Washington, DC, USA, 2021; pp. 421–436. ISBN 978-1-119-63930-5. [Google Scholar]
- Liu, X.; Lu, X.; Yu, R.; Sun, H.; Hao, X.; Qi, Z.; Cao, Z.; Zhang, Z. Greenhouse Gases Emissions from Riparian Wetlands: An Example from the Inner Mongolia Grassland Region in China. Biogeosciences 2021, 18, 4855–4872. [Google Scholar] [CrossRef]
- Lu, W.; Xiao, J.; Liu, F.; Zhang, Y.; Liu, C.; Lin, G. Contrasting Ecosystem CO2 Fluxes of Inland and Coastal Wetlands: A Meta-Analysis of Eddy Covariance Data. Glob. Change Biol. 2017, 23, 1180–1198. [Google Scholar] [CrossRef]
- European Commission Nature Restoration Law. Supporting the Restoration of Ecosystems for People, the Climate and the Planet. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en (accessed on 23 September 2024).
- Van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.-P.; et al. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversityframework from the European experience. Conserv. Lett. 2021, 14, e12771. [Google Scholar] [CrossRef]
- Ryfisch, S.; Seeger, I.; McDonald, H.; Lago, M.; Blicharska, M. Opportunities and Limitations for Nature-Based Solutions in EU Policies—Assessed with a Focus on Ponds and Pondscapes. Land Use Policy 2023, 135, 106957. [Google Scholar] [CrossRef]
- Premrov, A.; Wilson, D.; Saunders, M.; Yeluripati, J.; Renou-Wilson, F. CO2 Fluxes from Drained and Rewetted Peatlands Using a New ECOSSE Model Water Table Simulation Approach. Sci. Total Environ. 2021, 754, 142433. [Google Scholar] [CrossRef]
- Makrickas, E.; Manton, M.; Angelstam, P.; Grygoruk, M. Trading Wood for Water and Carbon in Peatland Forests? Rewetting Is Worth More than Wood Production. J. Environ. Manag. 2023, 341, 117952. [Google Scholar] [CrossRef]
- Balode, L.; Blumberga, D. Comparison of the Economic and Environmental Sustainability for Different Peatland Strategies. Land 2024, 13, 518. [Google Scholar] [CrossRef]
- European Commission. Commission Staff Working Document Sustainable Carbon Cycles—Carbon Farming Accompanying the Communication from the Commission to the European Parliament and the Council Sustainable Carbon Cycles. Available online: https://climate.ec.europa.eu/ (accessed on 21 September 2024).
- Li, X.; Martino, S. Assessing the Economic Feasibility of Voluntary Carbon Markets in Land Use Management Scenarios for Scottish Saltmarshes. Ocean. Coast. Manag. 2024, 251, 107099. [Google Scholar] [CrossRef]
- Peters, J.; Beltrán, E.; Wilson, S.; Salm, J.-O.; Ozola, I.; Zableckis, N. Remuneration Schemes for Paludiculture and Carbon Farming Guidance; Michael Succow Foundation: Greifswald, Germany, 2024. [Google Scholar]
- Fennessy, S.; Lei, G. Wetland Restoration for Climate Change Resilience; Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Wang, F.; Liu, J.; Qin, G.; Zhang, J.; Zhou, J.; Wu, J.; Zhang, L.; Thapa, P.; Sanders, C.J.; Santos, I.R.; et al. Coastal Blue Carbon in China as a Nature-Based Solution toward Carbon Neutrality. Innovation 2023, 4, 100481. [Google Scholar] [CrossRef]
- Ellis, P.W.; Page, A.M.; Wood, S.; Fargione, J.; Masuda, Y.J.; Carrasco Denney, V.; Moore, C.; Kroeger, T.; Griscom, B.; Sanderman, J.; et al. The Principles of Natural Climate Solutions. Nat. Commun. 2024, 15, 547. [Google Scholar] [CrossRef]
- World Economic Forum. Wetlands, the Forgotten Carbon Sink That Can Help Mitigate Impact of Climate Change; World Economic Forum: Geneva, Switzerland, 2023. [Google Scholar]
- Lim, B.S.; Kim, D.U.; Kim, A.R.; Seol, J.W.; Lee, C.S. Analysis of Ecodiversity as the Foundation for Conserving Biodiversity and Its Restoration Strategy. Korean J. Ecol. Environ. 2020, 53, 408–426. [Google Scholar] [CrossRef]
- An, J.H.; Lim, B.S.; Seol, J.; Kim, A.R.; Lim, C.H.; Moon, J.S.; Lee, C.S. Evaluation on the Restoration Effects in the River Restoration Projects Practiced in South Korea. Water 2022, 14, 2739. [Google Scholar] [CrossRef]
- Lim, C.H.; Pi, J.H.; Kim, A.R.; Cho, H.J.; Lee, K.S.; You, Y.H.; Lee, K.H.; Kim, K.D.; Moon, J.S.; Lee, C.S. Diagnostic Evaluation and Preparation of the Reference Information for River Restoration in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 1724. [Google Scholar] [CrossRef] [PubMed]
- Gigler, J.K.; Meerdink, G.; Hendrix, E.M.T. Willow Supply Strategies to Energy Plants. Biomass Bioenergy 1999, 17, 185–198. [Google Scholar] [CrossRef]
- Pulford, I.D.; Riddell-Black, D.; Stewart, C. Heavy Metal Uptake by Willow Clones from Sewage Sludge-Treated Soil: The Potential for Phytoremediation. Int. J. Phytoremediation 2002, 4, 59–72. [Google Scholar] [CrossRef]
- Szczukowski, S.; Stolarski, M.; Tworkowski, J.; Przyborowski, J.A.; Klasa, A. Productivity of Willow Coppice Plants Grown in Short Rotations. Plant Soil Environ. 2005, 51, 423. [Google Scholar] [CrossRef]
- Gorobets, A.; Silva, M. Willow Communities, Optimal Absorption of Carbon Dioxide from the Atmosphere. IOP Conf. Ser. Earth Environ. Sci. 2020, 595, 012038. [Google Scholar] [CrossRef]
- Matzek, V.; Stella, J.; Ropion, P. Development of a Carbon Calculator Tool for Riparian Forest Restoration. Appl. Veg. Sci. 2018, 21, 584–594. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H.; McClain, M.E. Riparia: Ecology, Conservation, and Management of Streamside Communities; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-047068-9. [Google Scholar]
- Riccioli, F.; Guidi Nissim, W.; Masi, M.; Palm, E.; Mancuso, S.; Azzarello, E. Modeling the Ecosystem Services Related to Phytoextraction: Carbon Sequestration Potential Using Willow and Poplar. Appl. Sci. 2020, 10, 8011. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Tylek, P.; Kwaśniewski, D.; Juliszewski, T.; Walczyk, J.; Likus-Cieślik, J.; Ochał, W.; Tabor, S. Carbon Sink Potential and Allocation in Above- and below-Ground Biomass in Willow Coppice. J. For. Res. 2021, 32, 349–354. [Google Scholar] [CrossRef]
- Rytter, R.-M.; Rytter, L.; Högbom, L. Carbon Sequestration in Willow (Salix Spp.) Plantations on Former Arable Land Estimated by Repeated Field Sampling and C Budget Calculation. Biomass Bioenergy 2015, 83, 483–492. [Google Scholar] [CrossRef]
- KFRI (Korea Forest Research Institute). Study on the Basis of Forest Carbon Accounting in Korea; Korea Forest Research Institute: Seoul, Republic of Korea, 2010. [Google Scholar]
- Návar, J. Allometric Equations for Tree Species and Carbon Stocks for Forests of Northwestern Mexico. For. Ecol. Manag. 2009, 257, 427–434. [Google Scholar] [CrossRef]
- Whittaker, R.H.; Marks, P.L. Methods of Assessing Terrestrial Productivty. In Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975; pp. 55–118. [Google Scholar]
- IPCC. A Report of Working Group of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK, 2001. [Google Scholar]
- PP Systems. 2018. EGM-5 Operation Manual V. 1.03. Available online: https://ppsystems.com/download/technical_manuals/80109-1-EGM5_Operation_V103.pdf (accessed on 20 May 2020).
- Bekku, Y.; Koizumi, H.; Oikawa, T.; Iwaki, H. Examination of Four Methods for Measuring Soil Respiration. Appl. Soil Ecol. 1997, 5, 247–254. [Google Scholar] [CrossRef]
- Lucian, L.; Monica, M.; Mădălina, B.; György, D.; Ioana, C.; Natalia, E.; Rahim, N. Measurements and Statistical Analysis of CO2 Efflux and Related Parameters from Crop and Forested Lands. IOP Conf. Ser.Earth Environ. Sci. 2023, 1216, 012005. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the Variability of Respiration in Terrestrial Ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Madalina, V.; Valentina, C.; Natalia, E.; Lucian, L.; Monica, M.; Anda, R.; Norbert, B.; Madalina, B.; Silvius, S.; György, D. Experimental Determination of Carbon Dioxide Flux in Soil and Correlation with Dependent Parameters. IOP Conf. Ser. Earth Environ. Sci. 2020, 616, 012010. [Google Scholar] [CrossRef]
- Lee, M.-S. Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach—A Case Study for Takayama Station, Japan. Korean J. Ecol. 2003, 26, 289–296. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Abdul Malak, D.; Marín, A.; Trombetti, M.; Sonsoles, S. Carbon Pools and Sequestration Potential of Wetlands in the European Union. In European Topic Centre on Urban, Land and Soil Systems; Similarities and Diversity of European Cities A Typology Tool to Support Urban Sustainability; European Union: Brussels, Belgium, 2021. [Google Scholar]
- Xiao, D.; Deng, L.; Kim, D.G.; Huang, C.; Tian, K. Carbon Budgets of Wetland Ecosystems in China. Glob. Chang. Biol. 2019, 25, 2061–2076. [Google Scholar] [CrossRef]
- Cabezas, A.; Comín, F.A. Carbon and Nitrogen Accretion in the Topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for Their Ecological Restoration. Ecol. Eng. 2010, 36, 640–652. [Google Scholar] [CrossRef]
- Samaritani, E.; Shrestha, J.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P.; Tockner, K.; Mitchell, E.; Luster, J. Heterogeneity of Soil Carbon Pools and Fluxes in a Channelized and a Restored Floodplain Section (Thur River, Switzerland). Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 1757–1769. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine Flood Plains: Present State and Future Trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Suzuki, S.; Yokozawa, M.; Inubushi, K.; Hara, T.; Kimura, M.; Tsuga, S.; Tako, Y.; Nakamura, Y. Evaluation of CO2 Exchange Rates in a Wetland Ecosystem Using the Closed Geosphere Experiment Facility. J. Hydrometeorol. 2012, 13, 966–980. [Google Scholar] [CrossRef]
- Greenhouse Gas Inventory & Research Center of Korea. National Greenhouse Gas Inventory Report of Korea; Ministry of Environment: Sejong, Republic of Korea, 2022. [Google Scholar]
- Roulet, N.T.; Ash, R.; Quinton, W.; Moore, T. Methane Flux from Drained Northern Peatlands: Effect of a Persistent Water Table Lowering on Flux. Glob. Biogeochem. Cycles 1993, 7, 749–769. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Wieder, R.K.; Vitt, D.H. Boreal Peatland C Fluxes under Varying Permafrost Regimes. Soil Biol. Biochem. 2002, 34, 907–912. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, X.; Zhang, K.; Du, M.; Zhang, Q. Hydrologic Pulsing Affects Denitrification Rates and Denitrifier Communities in a Revegetated Riparian Ecotone. Soil Biol. Biochem. 2017, 115, 137–147. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, X.; Zhang, Y.; Wang, Z.; Zhang, Q. Soil Nitrogen Dynamics Following Short-Term Revegetation in the Water Level Fluctuation Zone of the Three Gorges Reservoir, China. Ecol. Eng. 2012, 38, 37–44. [Google Scholar] [CrossRef]
- Shi, P.; Li, Z.; Li, P.; Zhang, Y.; Li, B. Trade-Offs Among Ecosystem Services after Vegetation Restoration in China’s Loess Plateau. Nat. Resour. Res. 2021, 30, 2703–2713. [Google Scholar] [CrossRef]
- Shen, S.; Pu, J.; Xu, C.; Wang, Y.; Luo, W.; Wen, B. Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Remote Sens. 2022, 14, 5160. [Google Scholar] [CrossRef]
- Sleight, N.J.; Volk, T.A.; Eisenbies, M. Belowground Biomass and Root:Shoot Ratios of Three Willow Cultivars at Two Sites. Forests 2023, 14, 525. [Google Scholar] [CrossRef]
- Walter, M.; Brzozowski, B.; Adamczak, M. Effect of Supercritical Extract from Black Poplar and Basket Willow on the Quality of Natural and Probiotic Drinkable Yogurt. Animals 2021, 11, 2997. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Pajač Živković, I.; Lešić, V.; Lemic, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yi, J.; Lee, J.; Shim, K.; Lee, J. Characteristics of Accumulated Soil Carbon and Soil Respiration on Vegetation in Namhangang Basin. Korean J. Environ. Biol. 2014, 32, 363–370. [Google Scholar] [CrossRef]
- Han, S.J.; Kim, H.W.; Kim, H.R.; Kim, H.J.; Han, D.U.; Park, S.K.; You, Y.H. Net Primary Production, Annual Accumulation of Organic Carbon and Leaf Decomposition in Salix Plant Community. J. Wetl. Res. 2010, 12, 15–22. [Google Scholar]
- Kim, T.G.; Lee, P.H.; Oh, K. The Actual Vegetation Map, Standing Crop Biomass and Primary Productivity of Salix spp. in the Upo Wetland. J. Wetl. Res. 2007, 9, 33–43. [Google Scholar]
- Kim, C.S.; Lee, P.H.; Oh, K. Productivity and Production Structure of Salix nipponica. J. Wetl. Res. 1999, 1, 61–69. [Google Scholar]
- Han, D.U.; Yoo, J.W.; Yoo, Y.H.; Lee, E.J.; Park, S.K. Aboveground Primary Productivity of Salix nipponica and Secondary Productivity of Sesarma dehaani at Janghang Wetland in Han River Estuary. Korean J. Ecol. Environ. 2010, 43, 298–306. [Google Scholar]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Buchmann, N. Biotic and Abiotic Factors Controlling Soil Respiration Rates in Picea Abies Stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Mo, W.; Lee, M.S.; Uchida, M.; Inatomi, M.; Saigusa, N.; Mariko, S.; Koizumi, H. Seasonal and Annual Variations in Soil Respiration in a Cool-Temperate Deciduous Broad-Leaved Forest in Japan. Agric. For. Meteorol. 2005, 134, 81–94. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhang, Y.; Li, T.; Ge, H.; Xia, S.; Gu, J.; Zhang, H.; Lü, B.; Wu, X.; et al. Rice Root Morphological and Physiological Traits Interaction with Rhizosphere Soil and Its Effect on Methane Emissions in Paddy Fields. Soil Biol. Biochem. 2019, 129, 191–200. [Google Scholar] [CrossRef]
- Pumpanen, J.; Ilvesniemi, H.; Hari, P. A Process-Based Model for Predicting Soil Carbon Dioxide Efflux and Concentration. Soil Sci. Soc. Am. J. 2003, 67, 402–413. [Google Scholar] [CrossRef]
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.A.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Afreen, T.; Singh, H. Does Change in Precipitation Magnitude Affect the Soil Respiration Response? A Study on Constructed Invaded and Uninvaded Tropical Grassland Ecosystem. Ecol. Indic. 2019, 102, 84–94. [Google Scholar] [CrossRef]
- Wang, C.; Fu, B.; Zhang, L.; Xu, Z. Soil Moisture–Plant Interactions: An Ecohydrological Review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Zhou, X.; Sherry, R.A.; An, Y.; Wallace, L.L.; Luo, Y. Main and Interactive Effects of Warming, Clipping, and Doubled Precipitation on Soil CO2 Efflux in a Grassland Ecosystem. Glob. Biogeochem. Cycles 2006, 20, 1–12. [Google Scholar] [CrossRef]
- Han, G.; Sun, B.; Chu, X.; Xing, Q.; Song, W.; Xia, J. Precipitation Events Reduce Soil Respiration in a Coastal Wetland Based on Four-Year Continuous Field Measurements. Agric. For. Meteorol. 2018, 256–257, 292–303. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, X.; Zhou, G.; Gong, J.; You, X. Temporal and Spatial Variation in Soil Respiration of Poplar Plantations at Different Developmental Stages in Xinjiang, China. J. Arid. Environ. 2011, 75, 51–57. [Google Scholar] [CrossRef]
- Verlinden, M.S.; Broeckx, L.S.; Wei, H.; Ceulemans, R. Soil CO2 Efflux in a Bioenergy Plantation with Fast-Growing Populus Trees—Influence of Former Land Use, Inter-Row Spacing and Genotype. Plant Soil 2013, 369, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.J.; Park, S.U.; Park, M.S.; Lee, C.S. Estimation of Soil Respiration Using Automated Chamber Systems in an Oak (Quercus Mongolica) Forest at the Nam-San Site in Seoul, Korea. Sci. Total Environ. 2012, 416, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, C.M.; Yang, S.A.; Jung, H.J.; Lee, J.M.; Min, Y.G.; Kim, J.W.; Myung, H.H.; Park, H.C. Estimation of Soil Microbiological Respiration Volume in Forest Ecosystem in the Sobaeksan National Park of Korea. J. Korean Soc. Environ. Restor. Technol. 2023, 26, 19–28. [Google Scholar] [CrossRef]
- Pacific, V.J.; McGlynn, B.L.; Riveros-Iregui, D.A.; Welsch, D.L.; Epstein, H.E. Variability in Soil Respiration across Riparian-Hillslope Transitions. Biogeochemistry 2008, 91, 51–70. [Google Scholar] [CrossRef]
- Doering, M.; Uehlinger, U.; Ackermann, T.; Woodtli, M.; Tockner, K. Spatiotemporal Heterogeneity of Soil and Sediment Respiration in a River-Floodplain Mosaic (Tagliamento, NE Italy). Freshw. Biol. 2011, 56, 1297–1311. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.; Beerling, D.J.; Cao, J.; Marcott, S.; Masson-Delmotte, V.; Prather, M.J.; Rohling, E.J.; et al. Young People’s Burden: Requirement of Negative CO2 Emissions. Earth Syst. Dyn. 2017, 8, 577–616. [Google Scholar] [CrossRef]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and Economic Limits to Negative CO2 Emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef]
- International Union for the Conservation of Nature (IUCN). Bonn Challenge; IUCN: Gland, Switzerland, 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IUCN: Gland, Switzerland, 2006. [Google Scholar]
- Sutfin, N.A.; Wohl, E.E.; Dwire, K.A. Banking Carbon: A Review of Organic Carbon Storage and Physical Factors Influencing Retention in Floodplains and Riparian Ecosystems. Earth Surf. Process. Landf. 2016, 41, 38–60. [Google Scholar] [CrossRef]
- Daigneault, A.J.; Eppink, F.V.; Lee, W.G. A National Riparian Restoration Programme in New Zealand: Is It Value for Money? J. Environ. Manag. 2017, 187, 166–177. [Google Scholar] [CrossRef]
- O’Brien, J.M.; Warburton, H.J.; Graham, S.E.; Franklin, H.M.; Febria, C.M.; Hogsden, K.L.; Harding, J.S.; McIntosh, A.R. Leaf Litter Additions Enhance Stream Metabolism, Denitrification, and Restoration Prospects for Agricultural Catchments. Ecosphere 2017, 8, e02018. [Google Scholar] [CrossRef]
- Capon, S.J.; Chambers, L.E.; Mac Nally, R.; Naiman, R.J.; Davies, P.; Marshall, N.; Pittock, J.; Reid, M.; Capon, T.; Douglas, M.; et al. Riparian Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation? Ecosystems 2013, 16, 359–381. [Google Scholar] [CrossRef]
- Knopf, F.L.; Johnson, R.R.; Rich, T.; Samson, F.B.; Szaro, R.C. Conservation of Riparian Ecosystems in the United States. Wilson Bull. 1988, 100, 272–284. [Google Scholar]
- Nilsson, C.; Berggren, K. Alterations of Riparian Ecosystems Caused by River Regulation: Dam Operations Have Caused Global-Scale Ecological Changes in Riparian Ecosystems. How to Protect River Environments and Human Needs of Rivers Remains One of the Most Important Questions of Our Time. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Perry, L.G.; Andersen, D.C.; Reynolds, L.V.; Nelson, S.M.; Shafroth, P.B. Vulnerability of Riparian Ecosystems to Elevated and Climate Change in Arid and Semiarid Western North America. Glob. Chang. Biol. 2012, 18, 821–842. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Dybala, K.E.; Matzek, V.; Gardali, T.; Seavy, N.E. Carbon Sequestration in Riparian Forests: A Global Synthesis and Meta-Analysis. Glob. Chang. Biol. 2019, 25, 57–67. [Google Scholar] [CrossRef]
- Lee, C. Ecology of the Miho River. Available online: https://m.ecomedia.co.kr/news/newsview.php?ncode=1065578017109847 (accessed on 23 September 2024).
- Ministry of Environment. Stream/River Ecosystem Survey and Health Assessment (2022~2024); Ministry of Environment: Seoul, Republic of Korea, 2022. [Google Scholar]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J. International Principles and Standards for the Practice of Ecological Restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Atkinson, J.; Bonser, S.P. “Active” and “Passive” Ecological Restoration Strategies in Meta-analysis. Restor. Ecol. 2020, 28, 1032–1035. [Google Scholar] [CrossRef]
Land Use | Year | ||||
---|---|---|---|---|---|
1999 | 2008 | 2012 | 2018 | 2022 | |
Agricultural field | 15.9 | 16.7 | 0.0 | 0.0 | 0.0 |
Water | 11.1 | 10.9 | 12.5 | 10.4 | 10.7 |
Sand | 1.3 | 0.0 | 0.0 | 4.1 | 1.6 |
Grassland | 4.7 | 0.0 | 6.3 | 6.8 | 9.8 |
Salix spp. | 1.7 | 0.0 | 0.0 | 9.8 | 12.6 |
Bare ground | 0.0 | 7.1 | 16.0 | 3.5 | 0.0 |
Total (ha) | 34.7 | 34.7 | 34.7 | 34.7 | 34.7 |
Organ | R2 | RMSE | MAE | MPE |
---|---|---|---|---|
Stem | 0.90 | 0.27 | 0.17 | 6.55 |
Branch | 0.91 | 0.14 | 0.12 | −9.25 |
Leaf | 0.78 | 0.15 | 0.14 | 43.07 |
Root | 0.82 | 0.12 | 0.09 | 4.21 |
Total | 0.88 | 0.08 | 0.07 | −1.97 |
Area | NPP (tonC·ha−1·yr−1) | Heterotrophic Respiration (tonC·ha−1·yr−1) | NEP (tonC·ha−1·yr−1) |
---|---|---|---|
Miho | 40.8 | 7.1 | 33.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.-S.; Joo, S.-J.; Seok, J.-E.; Lee, C.-S. An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea. Climate 2024, 12, 182. https://doi.org/10.3390/cli12110182
Lim B-S, Joo S-J, Seok J-E, Lee C-S. An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea. Climate. 2024; 12(11):182. https://doi.org/10.3390/cli12110182
Chicago/Turabian StyleLim, Bong-Soon, Seung-Jin Joo, Ji-Eun Seok, and Chang-Seok Lee. 2024. "An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea" Climate 12, no. 11: 182. https://doi.org/10.3390/cli12110182
APA StyleLim, B.-S., Joo, S.-J., Seok, J.-E., & Lee, C.-S. (2024). An Assessment of the Carbon Budget of the Passively Restored Willow Forests Along the Miho River, Central South Korea. Climate, 12(11), 182. https://doi.org/10.3390/cli12110182