Characterizing Northeast Africa Drought and Its Drivers
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods of Analysis
2.3. Study Area
3. Results
3.1. Climatology and PC Modes
3.2. Composite Drought
3.3. Processes and Predictability
3.4. Intra-Seasonal Variability
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jimma, T.B.; Demissie, T.; Diro, G.T.; Ture, K.; Terefe, T.; Solomon, D. Spatiotemporal variability of soil moisture over Ethiopia and its teleconnections with remote and local drivers. Theor. Appl. Climatol. 2023, 151, 1911–1929. [Google Scholar] [CrossRef]
- Camberlin, P.; Fontaine, B.; Louvet, S.; Oettli, P.; Valimba, P. Climate adjustments over Africa accompanying the Indian Monsoon onset. J. Clim. 2010, 23, 2047–2064. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Owiti, Z.; Ogallo, L.; Mutemi, J. Linkages between the Indian Ocean Dipole and East African rainfall anomalies. J. Kenya Meteo. Soc. 2008, 2, 3–17. [Google Scholar]
- Molla, M. Teleconnections between ocean-atmosphere coupled phenomenon and droughts in northern Ethiopia. Am. J. Clim. Chang. 2020, 9, 274–296. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H. Observed relationship between the Turkana low-level jet and boreal summer convection. Clim. Dyn. 2019, 53, 4037–4058. [Google Scholar] [CrossRef]
- Jury, M.R.; Minda, T.T. Turkana low-level jet influence on southwest Ethiopia climate. J. Hydrometeorol. 2023, 24, 585–599. [Google Scholar] [CrossRef]
- Lyon, B. Seasonal drought in the greater Horn of Africa and its recent increase during the March–May long rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Rowell, D.P.; Booth, B.B.; Nicholson, S.E.; Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Blade, I.; Liebmann, B.; Roberts, J.B.; Husak, G. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. 2014, 18, 4965–4978. [Google Scholar] [CrossRef]
- Funk, C.; Harrison, L.; Shukla, S.; Pomposi, C.; Galu, G.; Korecha, D.; Husak, G.; Magadzire, T.; Davenport, F.; Hillbruner, C.; et al. Examining the role of unusually warm Indo-Pacific sea-surface temperatures in recent African droughts. Q. J. R. Meteorol. Soc. 2018, 144, 360–383. [Google Scholar] [CrossRef]
- Liebmann, B.; Bladé, I.; Funk, C.; Allured, D.; Quan, X.-W.; Hoerling, M.; Hoell, A.; Peterson, P.; Thiaw, W.M. Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline. J. Clim. 2017, 30, 3867–3886. [Google Scholar] [CrossRef]
- Jury, M.R. South Indian Ocean Rossby waves. Atmos. Ocean. 2018, 56, 322–331. [Google Scholar] [CrossRef]
- Hastenrath, S. Zonal circulations over the equatorial Indian Ocean. J. Clim. 2000, 13, 2746–2756. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Clim. Dyn. 2014, 43, 1645–1660. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Adem, A.; Aynalem, D.; Tilahun, S.; Steenhuis, T. Predicting reference evaporation for the Ethiopian Highlands. J. Water Res. Prot. 2017, 9, 1244–1269. [Google Scholar] [CrossRef]
- Singer, M.B.; Asfaw, D.T.; Rosolem, R.; Cuthbert, M.O.; Miralles, D.G.; MacLeod, D.; Quichimbo, E.A.; Michaelides, K. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Sci. Data 2021, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, J.U. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Um, M.-J.; Kim, Y.; Park, D.; Jung, K.; Wang, Z.; Kim, M.M.; Shin, H. Impacts of potential evapotranspiration on drought phenomena in different regions and climate zones. Sci. Total Environ. 2020, 703, 135590. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Zhao, W.; Liu, Y. The increasing contribution of potential evapo-transpiration to severe droughts in the Yellow River basin. J. Hydrol. 2022, 605, 127310. [Google Scholar] [CrossRef]
- Jury, M.R. Representing the Indian Ocean Dipole. Phys. Oceanogr. 2022, 29, 417–432. [Google Scholar]
- Mueller, R.; Matsoukas, C.; Gratzki, A.; Behr, H.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance. Remote Sens. Environ. 2009, 113, 1012–1024. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA-3 a new ocean climate reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Yamagata, T.; Behera, S.K.; Luo, J.-J.; Masson, S.; Jury, M.R.; Rao, S.A. Coupled Ocean–Atmosphere Variability in the Tropical Indian Ocean. In Earth Climate: Ocean–Atmosphere Interaction; Wang, C., Xie, P.P., Carton, J.A., Eds.; American Geophysical Union: USA, 2003; pp. 189–212. Available online: https://ftp.cpc.ncep.noaa.gov/hwang/OLD/Yamagata_2004_GR.pdf (accessed on 1 June 2022).
- Viste, E.; Sorteberg, A. Moisture transport into the Ethiopian highlands. Int. J. Climatol. 2013, 33, 249–263. [Google Scholar] [CrossRef]
- Jury, M.R.; Huang, B. The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 2123–2136. [Google Scholar] [CrossRef]
- Vellinga, M.; Milton, S.F. Drivers of interannual variability of the East African long rains. Q. J. R. Meteorol. Soc. 2018, 144, 861–876. [Google Scholar]
- Yeshanew, A.; Jury, M.R. North African climate variability, part 1: Tropical thermocline–coupling. Theor. Appl. Climatol. 2007, 89, 25–36. [Google Scholar] [CrossRef]
- Yeshanew, A.; Jury, M.R. North African climate variability, part 2: Tropical circulation systems. Theor. Appl. Climatol. 2007, 89, 37–49. [Google Scholar] [CrossRef]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, R.I.; Wheeler, K.G.; Gedney, N.; Hickman, J.E.; Madani, N.; Folwell, S.S.; Abdo, G.; et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Marsham, J.H.; Keane, R.J.; Rowell, D.P.; Finney, D.L.; Black, E.; Allan, R.P. Eastern African paradox, rainfall decline due to shorter not less intense long rains. Clim. Atmos. Sci. 2019, 2, 34. [Google Scholar] [CrossRef]
- Mauder, M.; Jegede, O.O.; Okogbue, E.C.; Wimmer, F.; Foken, T. Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season. Theor. Appl. Climatol. 2007, 89, 171–183. [Google Scholar] [CrossRef]
Year | Month | PC2 | –IOD | OLR | U500 |
---|---|---|---|---|---|
2000 | 2 * | 2.32 | 1.99 | 1.98 | −1.60 |
1993 | 8 | 2.30 | 1.10 | −0.10 | −0.22 |
2000 | 1 | 2.23 | 1.78 | 1.90 | −1.37 |
2000 | 3 | 2.18 | 2.10 | 1.60 | −1.55 |
1993 | 9 | 2.15 | 1.26 | 0.28 | −0.21 |
1984 | 4 | 2.15 | 2.50 | 0.57 | −0.55 |
1984 | 3 | 2.12 | 2.63 | 1.13 | −1.05 |
2009 | 4 | 2.12 | 0.38 | 1.07 | −0.72 |
1993 | 7 | 2.12 | 0.78 | −0.32 | −0.20 |
2009 | 3 | 2.11 | 0.47 | 1.01 | −1.27 |
1999 | 12 | 2.04 | 1.57 | 1.42 | −1.24 |
1984 | 5 | 2.01 | 2.23 | −0.09 | 0.13 |
1998 | 11 * | 2.00 | 1.71 | 1.53 | −1.57 |
2009 | 5 | 1.95 | 0.23 | 1.15 | −0.38 |
1998 | 10 | 1.93 | 1.67 | 1.57 | −1.13 |
2009 | 2 | 1.93 | 0.49 | 0.90 | −1.53 |
1998 | 12 | 1.84 | 1.73 | 1.26 | −1.70 |
1993 | 6 | 1.83 | 0.48 | −0.26 | −0.32 |
1984 | 2 | 1.79 | 2.55 | 0.99 | −1.13 |
1999 | 11 | 1.78 | 1.38 | 1.15 | −1.34 |
2002 | 7 | 1.76 | 0.02 | −0.25 | −1.86 |
2000 | 4 | 1.76 | 2.07 | 0.96 | −1.21 |
1984 | 6 | 1.72 | 1.94 | −0.57 | 0.29 |
1990 | 8 | 1.71 | 0.35 | 0.73 | −1.53 |
2009 | 1 | 1.68 | 0.44 | 0.67 | −1.61 |
2002 | 6 | 1.68 | 0.13 | 0.37 | −1.81 |
1993 | 10 | 1.65 | 1.32 | 0.49 | −0.05 |
1999 | 1 | 1.64 | 1.73 | 0.99 | −1.67 |
Statistics (0 lead) | ||||||
---|---|---|---|---|---|---|
Adj. R sq. | 0.295 | |||||
Std. Error | 0.840 | |||||
ANOVA | ||||||
df | SS | MS | F | Sign. F | ||
Regression | 3 | 188.16 | 62.72 | 88.86 | 7 × 10–48 | |
Residual | 626 | 441.84 | 0.706 | |||
Total | 629 | 630.00 | ||||
Coeff. | Std. Error | t Stat | p–value | −95% | +95% | |
Intercept | 0.009 | 0.034 | 0.276 | 0.783 | −0.057 | 0.075 |
–IOD | 0.247 | 0.039 | 6.285 | 0.000 | 0.170 | 0.324 |
U500 | −0.291 | 0.036 | −8.133 | 0.000 | −0.361 | −0.221 |
OLR | 0.189 | 0.040 | 4.759 | 0.000 | 0.111 | 0.267 |
(a) | ||||||
Statistics (6-month lead) | ||||||
Adj. R sq. | 0.070 | |||||
Std. Error | 0.967 | |||||
ANOVA | ||||||
df | SS | MS | F | Sign. F | ||
Regression | 3 | 46.49 | 15.50 | 16.58 | 2.3 × 10–10 | |
Residual | 620 | 579.53 | 0.935 | |||
Total | 623 | 626.02 | ||||
Coeff. | Std. Error | t Stat | p–value | −95% | +95% | |
Intercept | 0.006 | 0.039 | 0.158 | 0.875 | −0.070 | 0.082 |
–IOD | 0.272 | 0.046 | 5.925 | 0.000 | 0.182 | 0.362 |
U500 | −0.063 | 0.042 | −1.501 | 0.134 | −0.145 | 0.019 |
OLR | −0.041 | 0.046 | −0.891 | 0.373 | −0.131 | 0.049 |
(b) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Characterizing Northeast Africa Drought and Its Drivers. Climate 2023, 11, 130. https://doi.org/10.3390/cli11060130
Jury MR. Characterizing Northeast Africa Drought and Its Drivers. Climate. 2023; 11(6):130. https://doi.org/10.3390/cli11060130
Chicago/Turabian StyleJury, Mark R. 2023. "Characterizing Northeast Africa Drought and Its Drivers" Climate 11, no. 6: 130. https://doi.org/10.3390/cli11060130
APA StyleJury, M. R. (2023). Characterizing Northeast Africa Drought and Its Drivers. Climate, 11(6), 130. https://doi.org/10.3390/cli11060130