The Western Pacific North Equatorial Countercurrent Responses to Two Forms of El Niño during the Period 1978 to 2017
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The NECC Investigation
3.2. EOF Analysis
3.2.1. Spring
3.2.2. Summer and Autumn
3.2.3. Winter
3.3. The NECC Transport
3.4. The Westerly Wind
4. Discussion
5. Conclusions
- 1.
- The EP episodes frequently caused a stronger NECC magnitude than the CP EN throughout the development stage. In the peak stage, on the other hand, the CP EN is detected more regularly, resulting in a greater NECC magnitude.
- 2.
- After a peak stage in winter, the magnitude of the NECC significantly reduced as it approached spring, one year following the EP episode’s development stage.
- 3.
- During the EP EN event between 1978 and 2017, the strength of the westerly wind had a more significant impact on the NECC than the CP episode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, G.C.; Sloyan, B.M.; Kessler, W.S.; Mctaggart, K.E. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr. 2002, 52, 31–61. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Wang, F. Seasonal Variation of the Surface North Equatorial Countercurrent (NECC) in the Western Pacific Ocean. Chin. J. Oceanol. Limnol. 2016, 34, 1332–1346. [Google Scholar] [CrossRef]
- Heron, S.F.; Joseph Metzger, E.; Skirving, W.J. Seasonal Variations of the Ocean Surface Circulation in the Vicinity of Palau. J. Oceanogr. 2006, 62, 413–426. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, D.; Guo, P.; Shi, M.; Zhang, Q. Meso-scale circulation at the intermediate-depth east of Mindanao observed by Argo profiling floats. Sci. China Earth Sci. 2010, 53, 432–440. [Google Scholar] [CrossRef]
- Kashino, Y.; Atmadipoera, A.; Kuroda, Y.; Lukijanto. Observed features of the Halmahera and Mindanao Eddies. J. Geophys. Res. Oceans 2013, 118, 6543–6560. [Google Scholar] [CrossRef]
- Webb, D.J. On the role of the North Equatorial Counter Current during a strong El Niño. Ocean Sci. 2017, 14, 633–660. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Wang, F. Dynamical responses of the west Pacific North Equatorial Countercurrent (NECC) system to El Niño events. J. Geophys. Res. Oceans 2013, 118, 2828–2844. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, B.; Du, Y.; Chen, S.; Qi, Y. Interannual and interdecadal variability of the North Equatorial Countercurrent in the Western Pacific. J. Geophys. Res. Oceans 2016, 121, 7743–7758. [Google Scholar] [CrossRef]
- Wijaya, Y.J.; Hisaki, Y. Differences in the reaction of north equatorial countercurrent to the development and mature phase of ENSO events in the western Pacific Ocean. Climate 2021, 9, 57. [Google Scholar] [CrossRef]
- Kessler, W.S. Observations of Long Rossby Waves in the Northern Tropical Pacific. J. Geophys. Res. 1990, 95, 5183–5217. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.C.; Wu, C.R.; Qiu, B. Modulation of Rossby waves on the Pacific North Equatorial Current bifurcation associated with the 1976 climate regime shift. J. Geophys. Res. Oceans 2014, 119, 6669–6679. [Google Scholar] [CrossRef]
- Abe, H.; Tanimoto, Y.; Hasegawa, T.; Ebuchi, N. Oceanic Rossby Waves over Eastern Tropical Pacific of Both Hemispheres Forced by Anomalous Surface Winds after Mature Phase of ENSO. J. Phys. Oceanogr. 2016, 46, 3397–3414. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, H.; Tan, S.; Yang, W.; Li, Y.; Liu, X.; Ren, Q.; Dewar, W.K. The Observed North Equatorial Countercurrent in the Far Western Pacific Ocean during the 2014–16 El Niño. J. Phys. Oceanogr. 2021, 51, 2003–2020. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; An, S.I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Hu, X.; Yang, S.; Cai, M. Contrasting the eastern Pacific El Niño and the central Pacific El Niño: Process-based feedback attribution. Clim. Dyn. 2016, 47, 2413–2424. [Google Scholar] [CrossRef]
- Paek, H.; Yu, J.-Y.; Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 2017, 44, 1848–1856. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Yu, J.Y.; Kao, H.Y.; Lee, T. Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific. J. Clim. 2010, 23, 2869–2883. [Google Scholar] [CrossRef]
- Yu, J.Y.; Kim, S.T. Relationships between Extratropical Sea Level Pressure Variations and the Central Pacific and Eastern Pacific Types of ENSO. J. Clim. 2011, 24, 708–720. [Google Scholar] [CrossRef]
- Tan, X.; Tang, Y.; Lian, T.; Yao, Z.; Li, X.; Chen, D. A study of the effects of westerly wind bursts on ENSO based on CESM. Clim. Dyn. 2020, 54, 885–899. [Google Scholar] [CrossRef]
- Wang, L.C.; Wu, C.R. Contrasting the Flow Patterns in the Equatorial Pacific Between Two Types of El Niño. Atmos.-Ocean. 2013, 51, 60–74. [Google Scholar] [CrossRef]
- Hsin, Y.-C.; Qiu, B. The impact of Eastern-Pacific versus Central-Pacific El Niños on the North Equatorial Countercurrent in the Pacific Ocean. J. Geophys. Res. 2012, 117, C11017. [Google Scholar] [CrossRef]
- Tan, S.; Zhou, H. The observed impacts of the two types of El Niño on the North Equatorial Countercurrent in the Pacific Ocean. Geophys. Res. Lett. 2018, 45, 10493–10500. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.; Li, T. Contrast of Rainfall-SST Relationship in the Western Pacific between the ENSO-Development and ENSO-Decaying Summers. J. Clim. 2009, 22, 4398–4405. [Google Scholar] [CrossRef]
- Wen, N.; Liu, Z.; Li, L. Direct ENSO impact on East Asian summer precipitation in the development summer. Clim. Dyn. 2018, 52, 6799–6815. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Mogensen, K.; Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and Its Real-Time Analysis Component; Technical Memorandum No. 823; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2018. [Google Scholar] [CrossRef]
- Björnsson, H.; Venegas, S. A Manual for EOF and SVD Analyses of Climate Data; Department of Atmospheric and Oceanic Sciences, Centre for Climate and Global Change Research, McGill University: Montréal, QC, Canada, 1997; 52p. [Google Scholar]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Clim. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Dawson, A. eofs: A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data. J. Open Res. Softw. 2016, 4, e14. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2002, 146, 1999–2049. [Google Scholar] [CrossRef]
- Molina, O.M.; Gutiérrez, C.; Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Clim. 2021, 41, 4864–4878. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Chelton, D.B. Effect of sampling errors in statistical estimation. Deep-Sea Res. 1983, 30, 1083–1101. [Google Scholar] [CrossRef]
- He, S.; Yu, J.Y.; Yang, S.; Fang, S.W. Why does the CP El Niño less frequently evolve into La Niña than the EP El Niño? Geophys. Res. Lett. 2020, 47, e2020GL087876. [Google Scholar] [CrossRef]
- Wu, X.; Okumura, Y.M.; DiNezio, P.N. Predictability of El Niño duration based on the onset timing. J. Clim. 2021, 34, 1351–1366. [Google Scholar] [CrossRef]
- Chen, M.; Li, T. Why 1986 El Niño and 2005 La Niña evolved different form a typical El Niño and La Niña. Clim. Dyn. 2018, 51, 4309–4327. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, H.; Lin, P.; Tseng, Y.; Small, J.; Bryan, F. The modeling of the North Equatorial Countercurrent in the Community Earth System Model and its oceanic component. J. Adv. Model. Earth Syst. 2019, 11, 531–544. [Google Scholar] [CrossRef]
- Boulanger, J.P.; Durand, E.; Duvel, J.P.; Menkes, C.; Delecluse, P.; Imbard, M.; Lengaigne, M.; Madec, G.; Masson, S. Role of non-linear oceanic processes in the response to westerly wind events: New implications for the 1997 El Niño onset. Geophys. Res. Lett. 2001, 28, 1603–1606. [Google Scholar] [CrossRef]
- Lengaigne, M.; Boulanger, J.P.; Menkes, C.; Masson, S.; Madec, G.; Delecluse, P. Ocean response to the March 1997 Westerly Wind Event. J. Geophys. Res. 2002, 107, 8015. [Google Scholar] [CrossRef]
- McPhaden, M.J. Evolution of the 2002/03 El Niño*. Bull. Am. Meteorol. Soc. 2004, 85, 677–696. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.P.; Wang, D.; Kamae, Y.; Zhang, H.; Hu, S.; Zheng, X.T.; Wang, W. Eastern Pacific Wind Effect on the Evolution of El Niño: Implications for ENSO Diversity. J. Clim. 2020, 33, 3197–3212. [Google Scholar] [CrossRef]
- Mosquera-Vásquez, K.; Dewitte, B.; Illig, S.; Takahashi, K.; Garric, G. The 2002/2003 El Niño: Equatorial waves sequence and their impact on sea surface temperature. J. Geophys. Res. Oceans 2013, 118, 346–357. [Google Scholar] [CrossRef]
- Zhang, R.H.; Endoh, M. Simulation of the 1986–1987 El Niño and 1988 La Niña events with a free surface tropical Pacific Ocean general circulation model. J. Geophys. Res. 1994, 99, 7743–7759. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Hu, S.; Lengaigne, M.; Guilyardi, E. The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim. Dyn. 2015, 44, 1381–1401. [Google Scholar] [CrossRef]
- Seiki, A.; Takayabu, Y.N.; Hasegawa, T.; Yoneyama, K. Lack of Westerly Wind Bursts in Unmaterialized El Niño Years. J. Clim. 2018, 31, 593–612. [Google Scholar] [CrossRef]
Intensity | EP | CP |
---|---|---|
Moderate | 1986/1987 | 1994/1995, 2002/2003, 2009/2010 |
Strong | - | 1987/1988, 1991/1992 |
Extreme | 1982/1983, 1997/1998, 2015/2016 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, Y.J.; Wisha, U.J.; Hisaki, Y. The Western Pacific North Equatorial Countercurrent Responses to Two Forms of El Niño during the Period 1978 to 2017. Climate 2022, 10, 136. https://doi.org/10.3390/cli10100136
Wijaya YJ, Wisha UJ, Hisaki Y. The Western Pacific North Equatorial Countercurrent Responses to Two Forms of El Niño during the Period 1978 to 2017. Climate. 2022; 10(10):136. https://doi.org/10.3390/cli10100136
Chicago/Turabian StyleWijaya, Yusuf Jati, Ulung Jantama Wisha, and Yukiharu Hisaki. 2022. "The Western Pacific North Equatorial Countercurrent Responses to Two Forms of El Niño during the Period 1978 to 2017" Climate 10, no. 10: 136. https://doi.org/10.3390/cli10100136