Opportunities for Post−COP26 Governance to Facilitate the Deployment of Low−Carbon Energy Infrastructure: An Open Door Policy
Abstract
:1. Introduction
- (i)
- To investigate the relationship between IQ and carbon emissions in Pakistan.
- (ii)
- To determine the relationship between urbanization, REC, R&D expenditures and inbound FDI and their resulting impact on environmental quality in Pakistan.
- (iii)
- To test the regulations–emissions nexus, the race-to-the-bottom hypothesis, the EKC hypothesis, and the PH hypothesis in a given nation.
2. Literature Review
3. Theoretical Framework
4. Materials and Methods
- (i)
- Unidirectional causality: CO2 Granger causality exists for FDI, GDPPC, GEF, REC, RND, RQ, PINS, and URB, but this causality does not exist in the reverse form.
- (ii)
- Reverse causality: FDI, GDPPC, GEF, REC, RND, RQ, PINS, and URB Granger causality exists for CO2, but not vice versa.
- (iii)
- Bidirectional causality: the studied variables established two-way associations between them.
- (iv)
- Neutrality: No cause–effect association has been recognized in the given analysis.
5. Results
6. Discussion
- I.
- According to the EKC, environmental deterioration will worsen as a country’s economy develops. Reduced productivity and higher medical expenses are only two ways in which this may harm the economy.
- II.
- The EKC indicates that, above a certain wealth threshold, more prosperity may result in less environmental harm. Increased productivity, better health, and more tourists are all ways in which this might boost the economy.
- III.
- The EKC implies that governments must strike a balance between economic development and preventing environmental deterioration, since economic development has reached a threshold of diminishing returns regarding environmental deterioration.
- IV.
- The EKC suggests that environmental rules and policies may be more successful in nations with higher incomes.
- V.
- Finally, the EKC may be used to determine the optimum amount of environmental control for a particular economic growth state.
7. Conclusions
Policy Repercussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COP26 | 26th Conference of Parties |
REC | Renewable energy consumption |
ARDL | Autoregressive distributed lag |
EKC | Environmental Kuznets curve |
IQ | Institutional quality |
RND | R&D expenditures |
EG | Economic growth |
PHH | Pollution haven hypothesis |
EC | Energy consumption |
FD | Financial development |
ICTs | Information and communication technologies |
CO2 | Carbon dioxide |
SDGs | Sustainable Development Goals |
GEF | Government effectiveness |
RQ | Regulatory quality |
PINS | Political instability |
URB | Urbanization |
ECT | Error correction term |
References
- United Nations. COP26: Together for Our Planet. 2022. Available online: https://www.un.org/en/climatechange/cop26 (accessed on 18 June 2022).
- Saadaoui, H.; Chtourou, N. Do institutional quality, financial development, and economic growth improve renewable energy transition? Some Evidence from Tunisia. J. Knowl. Econ. 2022. [Google Scholar] [CrossRef]
- Lin, T.; Wang, L.; Wu, J. Environmental Regulations, Green Technology Innovation, and High-Quality Economic Development in China: Application of Mediation and Threshold Effects. Sustainability 2022, 14, 6882. [Google Scholar] [CrossRef]
- Ikram, M.; Ferasso, M.; Sroufe, R.; Zhang, Q. Assessing green technology indicators for cleaner production and sustainable investments in a developing country context. J. Clean. Prod. 2021, 322, 129090. [Google Scholar] [CrossRef]
- Ellahi, N.; Kiani, A.K.; Awais, M.; Affandi, H.; Saghir, R.; Qaim, S. Investigating the institutional determinants of financial development: Empirical evidence from saarc countries. SAGE Open 2021, 11, 21582440211006029. [Google Scholar] [CrossRef]
- Bugden, D. Technology, decoupling, and ecological crisis: Examining ecological modernization theory through patent data. Environ. Sociol. 2022, 8, 228–241. [Google Scholar] [CrossRef]
- Wade, F.; Webb, J.; Creamer, E. Local government capacities to support net zero: Developing comprehensive heat and energy efficiency strategies in Scotland. Energy Res. Soc. Sci. 2022, 89, 102544. [Google Scholar]
- Godil, D.I.; Yu, Z.; Sharif, A.; Usman, R.; Khan, S.A.R. Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development. Sustain. Dev. 2021, 29, 694–707. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Sustainable hydrogen production: Technological advancements and economic analysis. Int. J. Hydrogen Energy 2021, 47, 37227–37255. [Google Scholar] [CrossRef]
- Guilhot, L. An analysis of China’s energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system. Energy Policy 2022, 162, 112806. [Google Scholar] [CrossRef]
- IEA. Renewable Power Is Set to Break Another Global Record in 2022 Despite Headwinds from Higher Costs and Supply Chain Bottlenecks; IEA: Washington, DC, USA, 2022. [Google Scholar]
- UNEP. The Heat Is on: A World of Climate Promises Not Yet Delivered. Emissions Gap Report 2021, United Nations Environment Programme. 2021. Available online: https://www.unep.org/resources/emissions-gap-report-2021 (accessed on 18 June 2022).
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environ. Sci. Ecotechnol. 2021, 8, 100130. [Google Scholar] [CrossRef]
- Qayyum, U.; Sabir, S.; Anjum, S. Urbanization, informal economy, and ecological footprint quality in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 67011–67021. [Google Scholar] [CrossRef] [PubMed]
- Nayal, K.; Raut, R.D.; Yadav, V.S.; Priyadarshinee, P.; Narkhede, B.E. The impact of sustainable development strategy on sustainable supply chain firm performance in the digital transformation era. Bus. Strategy Environ. 2022, 31, 845–859. [Google Scholar] [CrossRef]
- Hong, T.; Yu, N.; Mao, Z.; Zhang, S. Government-driven urbanisation and its impact on regional economic growth in China. Cities 2021, 117, 103299. [Google Scholar] [CrossRef]
- Dash, D.P.; Behera, S.R.; Rao, D.T.; Sethi, N.; Loganathan, N. Governance, urbanization, and pollution: A cross-country analysis of global south region. Cogent Econ. Financ. 2020, 8, 1742023. [Google Scholar] [CrossRef] [Green Version]
- Shera, A.; Dosti, B.; Grabore, P. Corruption Impact on Economic Growth: An Empirical Analysis. J. Econ. Dev. Manag. IT Financ. Mark. 2014, 6, 57–77. [Google Scholar]
- Shahbaz, M.; Solarin, S.A.; Sbia, R.; Bibi, S. Does energy intensity contribute to CO2 emissions? A trivariate analysis in selected African countries. Ecol. Indic. 2015, 50, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Younas, F. Institutional Change and Economic Growth in Pakistan. MRPA Paper no. 72938. 2015. Available online: https://mpra.ub.uni-muenchen.de/72938/ (accessed on 19 June 2022).
- Ibrahim, M.H.; Law, S.H. Institutional Quality and CO2 Emission–Trade Relations: Evidence from Sub-Saharan Africa. S. Afr. J. Econ. 2016, 84, 323–340. [Google Scholar] [CrossRef]
- Abid, M. Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from sub-Saharan Africa economies. Util. Policy 2016, 41, 85–94. [Google Scholar] [CrossRef]
- Peres, M.; Ameer, W.; Xu, H. The impact of institutional quality on foreign direct investment inflows: Evidence for developed and developing countries. Econ. Res.-Ekon. Istraz. 2018, 31, 626–644. [Google Scholar] [CrossRef] [Green Version]
- Lau, L.S.; Choong, C.K.; Ng, C.F. Role of institutional quality on environmental Kuznets curve: A comparative study in developed and developing countries. In Advances in Pacific Basin Business, Economics and Finance; Emerald Publishing Limited: Bingley, UK, 2018. [Google Scholar]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Nguyen, N.A.; Schinckus, C.; Su, T.D. The ambivalent role of institutions in the CO2 emissions: The case of emerging countries. Int. J. Energy Econ. Policy 2018, 8, 7–17. [Google Scholar]
- Hassan, S.T.; Khan, S.U.D.; Xia, E.; Fatima, H. Role of institutions in correcting environmental pollution: An empirical investigation. Sustain. Cities Soc. 2020, 53, 101901. [Google Scholar] [CrossRef]
- Hayat, A. Foreign direct investments, institutional quality, and economic growth. J. Int. Trade Econ. Dev. 2019, 28, 561–579. [Google Scholar] [CrossRef]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. J. Clean. Prod. 2019, 241, 118331. [Google Scholar] [CrossRef]
- Nwani, C.; Adams, S. Environmental cost of natural resource rents based on production and consumption inventories of carbon emissions: Assessing the role of institutional quality. Resour. Policy 2021, 74, 102282. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Dzator, J.; Savage, D.A. Renewable energy, CO2 emissions and economic growth in sub-Saharan Africa: Does institutional quality matter? J. Policy Model. 2021, 43, 1070–1093. [Google Scholar] [CrossRef]
- Udemba, E.N. Mitigating environmental degradation with institutional quality and foreign direct investment (FDI): New evidence from asymmetric approach. Environ. Sci. Pollut. Res. 2021, 28, 43669–43683. [Google Scholar] [CrossRef] [PubMed]
- Sheraz, M.; Deyi, X.; Mumtaz, M.Z.; Ullah, A. Exploring the dynamic relationship between financial development, renewable energy, and carbon emissions: A new evidence from belt and road countries. Environ. Sci. Pollut. Res. 2022, 29, 14930–14947. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, Z.; Yang, X.; Hussain, N.; Sinha, A. Financial development and environmental degradation: Do human capital and institutional quality make a difference? Gondwana Res. 2022, 105, 299–310. [Google Scholar] [CrossRef]
- Godil, D.I.; Sharif, A.; Agha, H.; Jermsittiparsert, K. The dynamic nonlinear influence of ICT, financial development, and institutional quality on CO2 emission in Pakistan: New insights from QARDL approach. Environ. Sci. Pollut. Res. 2020, 27, 24190–24200. [Google Scholar] [CrossRef]
- Malik, M.Y.; Latif, K.; Khan, Z.; Butt, H.D.; Hussain, M.; Nadeem, M.A. Symmetric and asymmetric impact of oil price, FDI and economic growth on carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL approach. Sci. Total Environ. 2020, 726, 138421. [Google Scholar] [CrossRef] [PubMed]
- Anser, M.K.; Alharthi, M.; Aziz, B.; Wasim, S. Impact of urbanization, economic growth, and population size on residential carbon emissions in the SAARC countries. Clean. Technol. Environ. Policy 2020, 22, 923–936. [Google Scholar] [CrossRef]
- Yang, Y.; Khan, A. Exploring the role of finance, natural resources, and governance on the environment and economic growth in South Asian countries. Environ. Sci. Pollut. Res. 2021, 28, 50447–50461. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Ntim, V.S.; Yang, J.; Zheng, Q.; Geng, L. Effect of institutional quality and foreign direct investment on economic growth and environmental quality: Evidence from African countries. Econ. Res.-Ekon. Istraz. 2021, 35, 4065–4091. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Effect of institutional quality and renewable energy consumption on CO2 emissions—An empirical investigation for developing countries. Environ. Sci. Pollut. Res. 2021, 28, 15485–15503. [Google Scholar] [CrossRef]
- Mehmood, U.; Tariq, S.; Ul-Haq, Z.; Meo, M.S. Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 10167–10174. [Google Scholar] [CrossRef]
- Ulucak, R. Analyzing energy innovation-emissions nexus in China: A novel dynamic simulation method. Energy 2022, 244, 123010. [Google Scholar]
- Anser, M.K.; Godil, D.I.; Khan, M.A.; Nassani, A.A.; Askar, S.E.; Zaman, K.; Salamun, H.; Sasmoko; Indrianti, Y.; Abro, M.M.Q. Nonlinearity in the relationship between COVID-19 cases and carbon damages: Controlling financial development, green energy, and R&D expenditures for shared prosperity. Environ. Sci. Pollut. Res. 2022, 29, 5648–5660. [Google Scholar]
- Ghorbal, S.; Farhani, S.; Youssef, S.B. Do renewable energy and national patents impact the environmental sustainability of Tunisia? Environ. Sci. Pollut. Res. 2022, 29, 25248–25262. [Google Scholar] [CrossRef]
- Mehmood, U. Renewable energy and foreign direct investment: Does the governance matter for CO2 emissions? Application of CS-ARDL. Environ. Sci. Pollut. Res. 2022, 29, 19816–19822. [Google Scholar] [CrossRef]
- Adebayo, T.S. Environmental consequences of fossil fuel in Spain amidst renewable energy consumption: A new insights from the wavelet-based Granger causality approach. Int. J. Sustain. Dev. World Ecol. 2022, 29, 579–592. [Google Scholar] [CrossRef]
- Hamid, I.; Alam, M.S.; Kanwal, A.; Jena, P.K.; Murshed, M.; Alam, R. Decarbonization pathways: The roles of foreign direct investments, governance, democracy, economic growth, and renewable energy transition. Environ. Sci. Pollut. Res. 2022, 29, 49816–49831. [Google Scholar] [CrossRef] [PubMed]
- Murshed, M.; Nurmakhanova, M.; Al-Tal, R.; Mahmood, H.; Elheddad, M.; Ahmed, R. Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth mitigate ecological footprints in South Asia? Energy Sources B Econ. Plan. Policy 2022, 7, 808–821. [Google Scholar] [CrossRef]
- Khan, H.; Weili, L.; Khan, I. The role of institutional quality in FDI inflows and carbon emission reduction: Evidence from the global developing and belt road initiative countries. Environ. Sci. Pollut. Res. 2022, 29, 30594–30621. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ali, M.; Hashmi, S.H.; Jahanger, A. Do income inequality and institutional quality affect CO2 emissions in developing economies? Environ. Sci. Pollut. Res. 2022, 29, 42720–42741. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Khan, M.K.; Rehman, A.; Dagar, V.; Oryani, B.; Tanveer, A. Impact of globalization, institutional quality, economic growth, electricity and renewable energy consumption on Carbon Dioxide Emission in OECD countries. Environ. Sci. Pollut. Res. 2022, 29, 24191–24202. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Yin, H.; Zeng, M. Green innovation and China’s CO2 emissions—The moderating effect of institutional quality. J. Environ. Plan. Manag. 2022, 65, 877–906. [Google Scholar] [CrossRef]
- Khan, H.; Weili, L.; Khan, I. Institutional quality, financial development and the influence of environmental factors on carbon emissions: Evidence from a global perspective. Environ. Sci. Pollut. Res. 2022, 29, 13356–13368. [Google Scholar] [CrossRef]
- Tripathy, P.; Khatua, M.; Behera, P.; Satpathyy, L.D.; Jena, P.K.; Mishra, B.R. Dynamic link between bilateral FDI, the quality of environment and institutions: Evidence from G20 countries. Environ. Sci. Pollut. Res. 2022, 29, 27150–27171. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sultana, N. Impacts of institutional quality, economic growth, and exports on renewable energy: Emerging countries perspective. Renew. Energy 2022, 189, 938–951. [Google Scholar] [CrossRef]
- Agboola, P.O.; Hossain, M.; Gyamfi, B.A.; Bekun, F.V. Environmental consequences of foreign direct investment influx and conventional energy consumption: Evidence from dynamic ARDL simulation for Turkey. Environ. Sci. Pollut. Res. 2022, 29, 53584–53597. [Google Scholar] [CrossRef] [PubMed]
- Addai, K.; Serener, B.; Kirikkaleli, D. Empirical analysis of the relationship among urbanization, economic growth and ecological footprint: Evidence from Eastern Europe. Environ. Sci. Pollut. Res. 2022, 29, 27749–27760. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, C.; Yu, X. Urbanization, Economic Development, and Ecological Environment: Evidence from Provincial Panel Data in China. Sustainability 2022, 14, 1124. [Google Scholar] [CrossRef]
- Dada, J.T.; Adeiza, A.; Noor, A.I.; Marina, A. Investigating the link between economic growth, financial development, urbanization, natural resources, human capital, trade openness and ecological footprint: Evidence from Nigeria. J. Bioecon. 2022, 24, 153–179. [Google Scholar] [CrossRef]
- Sohail, M.T.; Majeed, M.T.; Shaikh, P.A.; Andlib, Z. Environmental costs of political instability in Pakistan: Policy options for clean energy consumption and environment. Environ. Sci. Pollut. Res. 2022, 29, 25184–25193. [Google Scholar] [CrossRef]
- Liu, C.; Xin, L.; Li, J. Environmental regulation and manufacturing carbon emissions in China: A new perspective on local government competition. Environ. Sci. Pollut. Res. 2022, 29, 36351–36375. [Google Scholar] [CrossRef]
- Yasmeen, R.; Tao, R.; Shah, W.U.H.; Padda, I.U.H.; Tang, C. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef]
- Shaheen, F.; Zaman, K.; Lodhi, M.S.; Nassani, A.A.; Haffar, M.; Abro, M.M.Q. Do affluent nations value a clean environment and preserve it? Evaluating the N-shaped environmental Kuznets curve. Environ. Sci. Pollut. Res. 2022, 29, 47267–47285. [Google Scholar] [CrossRef]
- Xin-Gang, Z.; Jin, Z. Impacts of two-way foreign direct investment on carbon emissions: From the perspective of environmental regulation. Environ. Sci. Pollut. Res. 2022, 29, 52705–52723. [Google Scholar] [CrossRef]
- Shahzadi, I.; Yaseen, M.R.; Khan, M.T.I.; Makhdum, M.S.A.; Ali, Q. The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries. Renew. Energy 2022, 190, 1089–1099. [Google Scholar] [CrossRef]
- Anwar, A.; Sinha, A.; Sharif, A.; Siddique, M.; Irshad, S.; Anwar, W.; Malik, S. The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: Evidence from selected Asian countries. Environ. Dev. Sustain. 2022, 24, 6556–6576. [Google Scholar] [CrossRef]
- Chien, F.; Hsu, C.C.; Ozturk, I.; Sharif, A.; Sadiq, M. The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations. Renew. Energy 2022, 186, 207–216. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Andlib, Z.; Genie, M.G. How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques. Renew. Energy 2022, 185, 996–1005. [Google Scholar] [CrossRef]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The worldwide governance indicators: Methodology and analytical issues. Hague J. Rule Law 2011, 3, 220–246. [Google Scholar] [CrossRef]
- WGI. World Governance Indicators; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Copeland, B.R.; Taylor, M.S. North-South trade and the environment. Q. J. Econ. 1994, 109, 755–787. [Google Scholar] [CrossRef]
- Levinson, A.; Taylor, M.S. Unmasking the pollution haven effect. Int. Econ. Rev. 2008, 49, 223–254. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research Working Paper 3914; NBER: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M.; Balsalobre, D. N-Shaped Environmental Kuznets Curve: A Note on Validation and Falsification. 2018. Available online: https://mpra.ub.uni-muenchen.de/99313/ (accessed on 19 June 2022).
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Eppink, F.V.; van den Bergh, J.C.; Rietveld, P. Modelling biodiversity and land use: Urban growth, agriculture and nature in a wetland area. Ecol. Econ. 2004, 51, 201–216. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- WDI. World Development Indicators; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- WGI. World Governance Indicators; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Shao, Y. Does FDI affect carbon intensity? New evidence from dynamic panel analysis. Int. J. Clim. Chang. Strateg. Manag. 2017, 10, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Zaman, K.; Moemen, M.A.E.; Islam, T. Dynamic linkages between tourism transportation expenditures, carbon dioxide emission, energy consumption and growth factors: Evidence from the transition economies. Curr. Issues Tour. 2017, 20, 1720–1735. [Google Scholar] [CrossRef]
- Zubair, A.O.; Samad, A.R.A.; Dankumo, A.M. Does gross domestic income, trade integration, FDI inflows, GDP, and capital reduces CO2 emissions? An empirical evidence from Nigeria. Curr. Res. Environ. Sustain. 2020, 2, 100009. [Google Scholar] [CrossRef]
- Tariq, G.; Sun, H.; Haris, M.; Kong, Y.; Nadeem, A. Trade liberalization, FDI inflows economic growth and environmental sustanaibility in Pakistan and India. J. Agric. Environ. Int. Dev. 2018, 112, 253–269. [Google Scholar]
- Ali, R.; Ishaq, R.; Bakhsh, K.; Yasin, M.A. Do Agriculture Technologies Influence Carbon Emissions in Pakistan? Evidence based on ARDL technique. Environ. Sci. Pollut. Res. 2022, 29, 43361–43370. [Google Scholar] [CrossRef]
- Saleem, H.; Khan, M.B.; Shabbir, M.S.; Khan, G.Y.; Usman, M. Nexus between non-renewable energy production, CO2 emissions, and healthcare spending in OECD economies. Environ. Sci. Pollut. Res. 2022, 29, 47286–47297. [Google Scholar] [CrossRef]
- Yokoi, R.; Watari, T.; Motoshita, M. Future greenhouse gas emissions from metal production: Gaps and opportunities towards climate goals. Energy Environ. Sci. 2022, 15, 146–157. [Google Scholar] [CrossRef]
- Ekwueme, D.C.; Zoaka, J.D.; Alola, A.A. Carbon emission effect of renewable energy utilization, fiscal development, and foreign direct investment in South Africa. Environ. Sci. Pollut. Res. 2021, 28, 41821–41833. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Hussain, M.S.; Kamran, H.W.; Ehsanullah, S.; Maheen, R.; Shair, F. Trilemma association of energy consumption, carbon emission, and economic growth of BRICS and OECD regions: Quantile regression estimation. Environ. Sci. Pollut. Res. 2021, 28, 16014–16028. [Google Scholar] [CrossRef]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Hanif, I. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 15057–15067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Azlina, A.A.; Law, S.H.; Mustapha, N.H.N. Dynamic linkages among transport energy consumption, income and CO2 emission in Malaysia. Energy Policy 2014, 73, 598–606. [Google Scholar] [CrossRef]
- Ogundipe, A.; Olurinola, O.; Odebiyi, J.T. Examining the Validity of EKC in Western Africa: Different Pollutants Option. 2014. Available online: https://ssrn.com/abstract=2512152 (accessed on 15 September 2022).
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Kisswani, K.M.; Zaitouni, M. Does FDI affect environmental degradation? Examining pollution haven and pollution halo hypotheses using ARDL modelling. J. Asian Pac. Econ. 2021. [Google Scholar] [CrossRef]
- Ostic, D.; Twum, A.K.; Agyemang, A.O.; Boahen, H.A. Assessing the impact of oil and gas trading, foreign direct investment inflows, and economic growth on carbon emission for OPEC member countries. Environ. Sci. Pollut. Res. 2022, 29, 43089–43101. [Google Scholar] [CrossRef]
- Essandoh, O.K.; Islam, M.; Kakinaka, M. Linking international trade and foreign direct investment to CO2 emissions: Any differences between developed and developing countries? Sci. Total Environ. 2020, 712, 136437. [Google Scholar] [CrossRef]
- Li, J.; Jiang, T.; Ullah, S.; Majeed, M.T. The dynamic linkage between financial inflow and environmental quality: Evidence from China and policy options. Environ. Sci. Pollut. Res. 2022, 29, 1051–1059. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J. Environmental Kuznets curve hypothesis on CO2 emissions: Evidence for China. J. Risk Financ. Manag. 2021, 14, 93. [Google Scholar] [CrossRef]
- Ohlan, R. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Nat. Hazards 2015, 79, 1409–1428. [Google Scholar] [CrossRef]
- Lee, H.S.; Moseykin, Y.N.; Chernikov, S.U. Sustainable relationship between FDI, R&D, and CO2 emissions in emerging markets: An empirical analysis of BRICS countries. Russ. J. Econ. 2021, 7, 297–312. [Google Scholar]
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manag. 2021, 284, 111999. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.; Khan, M.K. Foreign direct investment inflow, economic growth, energy consumption, globalization, and carbon dioxide emission around the world. Environ. Sci. Pollut. Res. 2021, 28, 55643–55654. [Google Scholar] [CrossRef]
- Naz, S.; Sultan, R.; Zaman, K.; Aldakhil, A.M.; Nassani, A.A.; Abro, M.M.Q. Moderating and mediating role of renewable energy consumption, FDI inflows, and economic growth on carbon dioxide emissions: Evidence from robust least square estimator. Environ. Sci. Pollut. Res. 2019, 26, 2806–2819. [Google Scholar] [CrossRef]
- Polcyn, J.; Us, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Factors influencing the renewable energy consumption in selected european countries. Energies 2021, 15, 108. [Google Scholar] [CrossRef]
- Obobisa, E.S.; Chen, H.; Mensah, I.A. The impact of green technological innovation and institutional quality on CO2 emissions in African countries. Technol. Forecast. Soc. Chang. 2022, 180, 121670. [Google Scholar] [CrossRef]
- Saidi, K.; Mbarek, M.B. Nuclear energy, renewable energy, CO2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. Prog. Nucl. Energy 2016, 88, 364–374. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. J. Environ. Sci. Stud. 2022, 12, 794–814. [Google Scholar] [CrossRef]
Factors | Variables | Symbol | Measurement (Units) | Sources |
---|---|---|---|---|
Low-Carbon Infrastructure | Carbon emissions | CO2 | Metric tons per capita | WDI |
Renewable energy consumption | REC | % of total final EC | WDI | |
Research and development expenditures | RND | % of GDP | WDI | |
Institutional Quality | Government effectiveness | GEF | −2.5 (weak) to 2.5 (strong) performance | WGI |
Regulatory quality | RQ | −2.5 (weak) to 2.5 (strong) performance | WGI | |
Political instability | PINS | −2.5 (weak) to 2.5 (strong) performance | WGI | |
Control Variables | Foreign direct investment | FDI | Net inflows (% of GDP) | WDI |
GDP per capita | GDPPC | Constant 2015 USD | WDI | |
Urbanization | URB | Share of urban population in total population | WDI |
Variables | CO2 | RQ | GEF | PINS | FDI | GDPPC | REC | RND | RQ | SQ_GDPPC | URB |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.240 | 0.437 | 0.792 | 0.481 | 1.159 | 7.098 | 3.855 | 1.360 | 0.437 | 3.919 | 3.531 |
Median | 0.258 | 0.446 | 0.752 | 0.459 | 0.819 | 7.122 | 3.854 | 1.402 | 0.446 | 3.926 | 3.518 |
Maximum | 0.402 | 0.466 | 2.171 | 1.033 | 3.668 | 7.315 | 3.954 | 2.214 | 0.466 | 3.979 | 3.645 |
Minimum | 0.018 | 0.332 | 0.019 | 0.098 | 0.375 | 6.912 | 3.731 | 0.458 | 0.332 | 3.866 | 3.468 |
Std. Dev. | 0.123 | 0.030 | 0.556 | 0.368 | 0.876 | 0.131 | 0.071 | 0.473 | 0.030 | 0.036 | 0.059 |
Skewness | −0.459 | −2.466 | 0.534 | 0.273 | 1.787 | 0.025 | −0.378 | −0.025 | −2.466 | 0.003 | 0.476 |
Kurtosis | 2.144 | 7.730 | 2.606 | 1.397 | 5.075 | 1.778 | 2.150 | 2.504 | 7.730 | 1.767 | 1.854 |
Variables | CO2 | FDI | GDPPC | GEF | REC | RND | RQ | SQ_GDPPPC | URB | PINS |
---|---|---|---|---|---|---|---|---|---|---|
CO2 | 1 | |||||||||
FDI | −0.142 | 1 | ||||||||
GDPPC | −0.937 | −0.009 | 1 | |||||||
GEF | −0.247 | −0.395 | 0.254 | 1 | ||||||
REC | 0.991 | −0.074 | −0.953 | −0.275 | 1 | |||||
RND | 0.460 | −0.633 | −0.462 | 0.404 | 0.452 | 1 | ||||
RQ | −0.356 | 0.059 | 0.443 | 0.023 | −0.373 | −0.570 | 1 | |||
SQ_GDPPC | −0.936 | −0.005 | 0.999 | 0.249 | −0.952 | −0.468 | 0.446 | 1 | ||
URB | −0.883 | −0.218 | 0.960 | 0.349 | −0.904 | −0.234 | 0.334 | 0.958 | 1 | |
PINS | −0.789 | −0.225 | 0.913 | 0.299 | −0.814 | −0.182 | 0.312 | 0.912 | 0.951 | 1 |
Variables | Level | First Difference | Decision | ||
---|---|---|---|---|---|
Constant | Constant and Trend | Constant | Constant and Trend | ||
CO2 | −0.315 (0.914) | 4.334 (0.076) | −5.440 (0.000) | −5.263 (0.000) | I(1) |
FDI | −4.458 (0.0010) | −4.377 (0.006) | −4.302 (0.0016) | −4.536 (0.004) | I(0) |
GDPPC | −2.031 (0.272) | −2.162 (0.497) | −4.172 (0.002) | −4.510 (0.004) | I(1) |
GEF | −2.405 (0.143) | −2.573 (0.293) | −7.609 (0.000) | −7.594 (0.000) | I(1) |
REC | 0.989 (0.650341) | −2.191 (0.4828) | −5.569 (0.0000) | 5.697 (0.0001) | I(1) |
RND | −1.414 (0.572) | −1.258 (0.892) | −9.825 (0.000) | −9.817 (0.000) | I(1) |
RQ | −3.106 (0.033) | −3.317 (0.076) | −4.530 (0.000) | −4.497 (0.004) | I(1) |
SQ_GDPPC | −2.244 (0.194) | −2.089 (0.537) | −4.244 (0.001) | −4.689 (0.002) | I(1) |
URB | −3.278 (0.022) | −2.749 (0.223) | −1.317 (0.612) | −2.471 (0.340) | I(0) |
PINS | −0.595 (0.865) | −1.595 (0.649) | −10.443 (0.000) | −9.995 (0.000) | I(1) |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | 1887.492 | NA | −39.9679 | 3.55 × 1029 | −79.594 | −79.594 |
1 | 2809.598 | 1648.02 | 6.04 × 1037 | −57.8638 | −55.42872 * | −56.8802 |
2 | 2827.632 | 28.77755 | 2.41 × 1036 | −56.5241 | −51.8975 | −54.6553 |
3 | 2864.707 | 52.06249 | 6.89 × 1036 | −55.5895 | −48.7713 | −52.8355 |
4 | 3119.925 | 309.52 | 2.14 × 1037 | −59.2963 | −50.2865 | −55.657 |
5 | 3309.492 | 193.5997 * | 3.24 × 1038 * | −61.60621 * | −50.4049 | −57.08169 * |
6 | 3343.391 | 28.12934 | 1.79 × 1037 | −60.6041 | −47.2112 | −55.1943 |
Variables | Coefficient | Std. Error | t−Statistic | Prob. |
---|---|---|---|---|
FDI(−1) | −0.01782 | 0.003572 | −4.98768 | 0.0000 |
GDPPC(−1) | −0.45623 | 0.148116 | −3.08021 | 0.0031 |
GEF(−1) | 0.006402 | 0.002682 | 2.386786 | 0.0200 |
REC(−1) | 0.548698 | 0.113683 | 4.826581 | 0.0000 |
RND | −0.01929 | 0.007926 | −2.43298 | 0.0178 |
RQ(−1) | −0.05337 | 0.062311 | −0.85658 | 0.3949 |
SQ_GDPPC(−1) | 0.613143 | 0.329364 | 1.861593 | 0.0673 |
URB(−1) | −0.32409 | 0.201295 | −1.61001 | 0.1124 |
PINS(−1) | 0.028133 | 0.01154 | 2.437819 | 0.0176 |
D(FDI) | −0.01245 | 0.00305 | −4.08238 | 0.0001 |
D(FDI(−1)) | 0.012092 | 0.002909 | 4.156578 | 0.0001 |
D(FDI(−2)) | 0.012092 | 0.002909 | 4.156578 | 0.0001 |
D(FDI(−3)) | 0.012092 | 0.002909 | 4.156578 | 0.0001 |
D(GDPPC) | 13.55818 | 5.068431 | 2.675025 | 0.0095 |
D(GDPPC(−1)) | 19.07498 | 4.777181 | 3.992936 | 0.0002 |
D(GDPPC(−2)) | 19.07498 | 4.777181 | 3.992936 | 0.0002 |
D(GDPPC(−3)) | 19.07498 | 4.777181 | 3.992936 | 0.0002 |
D(GEF) | 0.012587 | 0.003121 | 4.032524 | 0.0002 |
D(REC) | 1.250213 | 0.074516 | 16.77773 | 0.0000 |
D(RQ) | 0.104873 | 0.061548 | 1.703914 | 0.0933 |
D(RQ(−1)) | 0.129691 | 0.047625 | 2.723182 | 0.0084 |
D(RQ(−2)) | 0.129691 | 0.047625 | 2.723182 | 0.0084 |
D(RQ(−3)) | 0.129691 | 0.047625 | 2.723182 | 0.0084 |
D(SQ_GDPPC) | −51.1203 | 18.29753 | −2.79384 | 0.0069 |
D(SQ_GDPPC(−1)) | −69.2152 | 17.08028 | −4.05235 | 0.0001 |
D(SQ_GDPPC(−2)) | −69.2152 | 17.08028 | −4.05235 | 0.0001 |
D(SQ_GDPPC(−3)) | −69.2152 | 17.08028 | −4.05235 | 0.0001 |
D(URB) | 4.824353 | 0.994008 | 4.853436 | 0.0000 |
D(URB(−1)) | 5.22613 | 0.946009 | 5.524396 | 0.0000 |
D(URB(−2)) | 5.22613 | 0.946009 | 5.524396 | 0.0000 |
D(URB(−3)) | 5.22613 | 0.946009 | 5.524396 | 0.000 |
D(PINS) | 0.044955 | 0.015151 | 2.967155 | 0.0042 |
Long−Term Elasticities | ||||
FDI | −0.036984 | 0.007071 | −5.230238 | 0.0000 |
GDPPC | −0.947094 | 0.296818 | −3.190819 | 0.0022 |
GEF | 0.013291 | 0.005682 | 2.338876 | 0.0225 |
REC | 1.139058 | 0.107899 | 10.55670 | 0.0000 |
RND | −0.040033 | 0.016326 | −2.452050 | 0.0170 |
RQ | −0.110801 | 0.129907 | −0.852927 | 0.3969 |
SQ_GDPPC | 1.272840 | 0.718956 | 1.770400 | 0.0815 |
URB | −0.672783 | 0.430430 | −1.563050 | 0.1231 |
PINS | 0.058402 | 0.022931 | 2.546819 | 0.0133 |
Test Statistic | Value | k |
---|---|---|
F-statistic | 5.171 | 9 |
Critical Bounds Value | ||
Significance | I(0) Bound | I(1) Bound |
10% | 1.63 | 2.75 |
5% | 1.86 | 3.05 |
1% | 2.37 | 3.68 |
LM Test | Hypothesis | |||
F-statistic | 0.188 | Prob. F(2,51) | 0.828 | Accept Ho |
Obs*R-squared | 0.698 | Prob. Chi-Square(2) | 0.705 | |
Heteroskedasticity Test | ||||
F-statistic | 1.439 | Prob. F(35,59) | 0.107 | Accept Ho |
Obs*R-squared | 43.755 | Prob. Chi-Square(35) | 0.147 | |
Scaled explained SS | 51.808 | Prob. Chi-Square(35) | 0.033 | |
Ramsey RESET Test | ||||
Value | d.f | Prob. | Accept Ho | |
t-statistic | 1.305 | 52 | 0.197 | |
F-statistic | 1.704 | (1, 52) | 0.197 | |
Jarque–Bera normality test | Accept Ho | |||
Jarque–Bera value | 0.850 | |||
Prob. | 0.653 |
Null Hypothesis | F−Statistic | Prob. |
---|---|---|
GDPPC → CO2 CO2 → GDPPC | 5.75067 | 0.0025 |
1.67983 | 0.1365 | |
RND → FDI FDI → RNDS | 6.34073 | 0.0025 |
0.29517 | 0.9376 | |
URB → CO2 CO2 → URB | 2.13929 | 0.0576 |
0.00121 | 1.0000 | |
SQ_GDPPC → CO2 CO2 → SQ_GDPPC | 5.67713 | 0.0005 |
1.68649 | 0.1348 | |
GEF → CO2 CO2 → GF | 7.13937 | 0.00406 |
0.30236 | 0.9345 | |
RND → CO2 CO2 → RND | 6.34073 | 0.0025 |
0.29517 | 0.9376 | |
REC → GEF GF → REC | 0.85973 | 0.5282 |
5.51936 | 0.0005 | |
RND → GEF GEF → RND | 1.54199 | 0.1751 |
5.97276 | 0.0005 | |
SQ_GDPPC → REC REC → SQ_GDPPC | 2.78855 | 0.0162 |
0.97322 | 0.4488 |
Years | S.E. | CO2 | FDI | GDPPPC | GEF | REC | RND | RQ | SQ_GDPPC | URB | PINS |
---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 0.020 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2023 | 0.025 | 99.505 | 8.00 × 105 | 0.001 | 0.175 | 0.061 | 0.0009 | 0.086 | 0.038 | 0.129 | 2.26 × 105 |
2024 | 0.029 | 93.880 | 0.203 | 1.509 | 3.786 | 0.099 | 0.0037 | 0.102 | 0.138 | 0.117 | 0.158 |
2025 | 0.033 | 84.468 | 0.564 | 3.994 | 9.575 | 0.268 | 0.0187 | 0.220 | 0.343 | 0.122 | 0.422 |
2026 | 0.037 | 74.205 | 0.844 | 7.3166 | 15.257 | 0.428 | 0.0613 | 0.416 | 0.680 | 0.138 | 0.651 |
2027 | 0.041 | 64.794 | 0.993 | 10.951 | 19.860 | 0.516 | 0.1405 | 0.635 | 1.145 | 0.175 | 0.786 |
2028 | 0.044 | 56.801 | 1.015 | 14.600 | 23.233 | 0.547 | 0.244 | 0.820 | 1.665 | 0.240 | 0.831 |
2029 | 0.048 | 50.249 | 0.951 | 18.070 | 25.564 | 0.547 | 0.355 | 0.937 | 2.170 | 0.344 | 0.809 |
2030 | 0.051 | 44.953 | 0.851 | 21.262 | 27.110 | 0.535 | 0.458 | 0.980 | 2.607 | 0.491 | 0.747 |
2031 | 0.054 | 40.685 | 0.756 | 24.120 | 28.097 | 0.524 | 0.546 | 0.967 | 2.946 | 0.684 | 0.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Khan, S.; Zaman, K.; Siddique, M.; Khan, H.u.R. Opportunities for Post−COP26 Governance to Facilitate the Deployment of Low−Carbon Energy Infrastructure: An Open Door Policy. Climate 2023, 11, 29. https://doi.org/10.3390/cli11020029
Imran M, Khan S, Zaman K, Siddique M, Khan HuR. Opportunities for Post−COP26 Governance to Facilitate the Deployment of Low−Carbon Energy Infrastructure: An Open Door Policy. Climate. 2023; 11(2):29. https://doi.org/10.3390/cli11020029
Chicago/Turabian StyleImran, Muhammad, Shiraz Khan, Khalid Zaman, Muhammad Siddique, and Haroon ur Rashid Khan. 2023. "Opportunities for Post−COP26 Governance to Facilitate the Deployment of Low−Carbon Energy Infrastructure: An Open Door Policy" Climate 11, no. 2: 29. https://doi.org/10.3390/cli11020029
APA StyleImran, M., Khan, S., Zaman, K., Siddique, M., & Khan, H. u. R. (2023). Opportunities for Post−COP26 Governance to Facilitate the Deployment of Low−Carbon Energy Infrastructure: An Open Door Policy. Climate, 11(2), 29. https://doi.org/10.3390/cli11020029