# Impact of Blue Space Geometry on Urban Heat Island Mitigation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Governing Equations

^{2}s

^{−1}], ${b}_{i}$ is the buoyancy force [ms${}^{-2}$], and ${g}_{i}$ is the gravitational acceleration [ms${}^{-2}$]. Buoyancy is expressed in terms of variation of temperature $\Delta T$ and vapour concentration $\Delta \omega $ with respect to reference values and their volume expansion coefficients ${\beta}_{T}$ [K${}^{-1}$] and ${\beta}_{\omega}$ [–]. The equations for temperature and water vapour read:

#### 2.2. Evaporation Model

#### 2.3. Algorithm and Numerical Schemes

#### 2.4. Case Study Description

#### 2.4.1. Simulation Outline

#### 2.4.2. Initial and Boundary Conditions

`inletOutlet`condition in OpenFOAM). At the top, a constant shear–stress boundary condition ($\tau =\rho {{u}_{ABL}^{*}}^{2}$) is imposed for U to ensure horizontal homogeneity as proposed by Hargreaves and Wright [37]. For all other quantities, a zero-gradient condition is used. Lastly, a symmetry condition is applied to the lateral boundaries.

#### 2.4.3. Computational Domain

#### 2.5. Sensitivity Analysis

## 3. Results and Discussion

#### 3.1. Varying Blue Space Size

#### 3.1.1. Mean Velocity Field

#### 3.1.2. Temperature and Water Vapour Field

#### 3.1.3. Interface Flux Budget

#### 3.2. Varying Blue Space Shape

#### 3.2.1. Mean Velocity Field

#### 3.2.2. Temperature and Water Vapour Field

#### 3.2.3. Interface Flux Budget

#### 3.3. Limitations and Recommendations for Future Work

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

CFD | Computational Fluid Dynamics |

DC | Downwind Canyon |

GCI | Grid Convergence Index |

LSI | Landscape Shape Index |

NBS | Nature-Based Solutions |

RANS | Reynolds-averaged Navier-Stokes |

RNG | Re-Normalisation Group |

SIMPLE | Semi-Implicit Method for Pressure Linked Equations |

TKE | Turbulent Kinetic Energy |

UHI | Urban Heat Island |

WRF | Weather Research and Forecasting |

## References

- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; Intergovernmental Panel on Climate Change (IPCC): Paris, France, 2021. [Google Scholar]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heat waves. Nat. Commun.
**2020**, 11, 3357. [Google Scholar] [CrossRef] [PubMed] - Gasparrini, A.; Masselot, P.; Scortichini, M.; Schneider, R.; Mistry, M.N.; Sera, F.; Macintyre, H.L.; Phalkey, R.; Vicedo-Cabrera, A.M. Small-area assessment of temperature-related mortality risks in England and Wales: A case time series analysis. Lancet Planet. Health
**2022**, 6, e557–e564. [Google Scholar] [CrossRef] [PubMed] - Environmental Audit. Heatwaves: Adapting to Climate Change. 2018. Available online: https://publications.parliament.uk/pa/cm201719/cmselect/cmenvaud/826/82603.htm (accessed on 1 November 2022).
- Howard, L. The Climate of London Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around It; Harvey and Darton: London, UK, 1833. [Google Scholar]
- Girardin, C.A.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—if we act now. Nature
**2021**, 593, 191–194. [Google Scholar] [CrossRef] [PubMed] - Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; van Wyk, E.; Ordóñez, C.; et al. Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. BioScience
**2019**, 69, 455–466. [Google Scholar] [CrossRef] [Green Version] - Ampatzidis, P.; Kershaw, T. A review of the impact of blue space on the urban microclimate. Sci. Total Environ.
**2020**, 730, 139068. [Google Scholar] [CrossRef] - Gunawardena, K.; Wells, M.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ.
**2017**, 584–585, 1040–1055. [Google Scholar] [CrossRef] - Imam Syafii, N.; Ichinose, M.; Kumakura, E.; Jusuf, S.K.; Chigusa, K.; Wong, N.H. Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustain. Cities Soc.
**2017**, 34, 79–89. [Google Scholar] [CrossRef] - Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan.
**2012**, 105, 27–33. [Google Scholar] [CrossRef] - Theeuwes, N.E.; Solcerovà, A.; Steeneveld, G.J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos.
**2013**, 118, 8881–8896. [Google Scholar] [CrossRef] [Green Version] - Zhao, T.; Fong, K. Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustain. Cities Soc.
**2017**, 32, 523–531. [Google Scholar] [CrossRef] - Zhao, T.; Fong, K. Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot-humid climate (Part II): Evaluation and characterization. Sustain. Cities Soc.
**2017**, 35, 841–850. [Google Scholar] [CrossRef] - Li, C.; Yu, C.W. Mitigation of Urban Heat Development by Cool Island Effect of Green Space and Water Body. In Proceedings of the Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning; Li, A., Zhu, Y., Li, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 551–561. [Google Scholar]
- Sun, R.; Chen, A.; Chen, L.; Lü, Y. Cooling effects of wetlands in an urban region: The case of Beijing. Ecol. Indic.
**2012**, 20, 57–64. [Google Scholar] [CrossRef] - Lin, Y.; Wang, Z.; Jim, C.Y.; Li, J.; Deng, J.; Liu, J. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. J. Clean. Prod.
**2020**, 262, 121411. [Google Scholar] [CrossRef] - Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xu, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic.
**2019**, 106, 105501. [Google Scholar] [CrossRef] - Xue, Z.; Hou, G.; Zhang, Z.; Lyu, X.; Jiang, M.; Zou, Y.; Shen, X.; Wang, J.; Liu, X. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: Case study of cities of Northeast China. Landsc. Urban Plan.
**2019**, 182, 92–100. [Google Scholar] [CrossRef] - Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of cooling effect between green space and water body. Sustain. Cities Soc.
**2021**, 67, 102711. [Google Scholar] [CrossRef] - Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc.
**2020**, 53, 101932. [Google Scholar] [CrossRef] - Ampatzidis, P.; Cintolesi, C.; Petronio, A.; Di Sabatino, S.; Kershaw, T. Evaporating water body effects in a simplified urban neighbourhood: A RANS analysis. J. Wind. Eng. Ind. Aerodyn.
**2022**, 227, 105078. [Google Scholar] [CrossRef] - Cintolesi, C.; Petronio, A.; Armenio, V. Large-eddy simulation of thin film evaporation and condensation from a hot plate in enclosure: First order statistics. Int. J. Heat Mass Transf.
**2016**, 101, 1123–1137. [Google Scholar] [CrossRef] [Green Version] - Cintolesi, C.; Petronio, A.; Armenio, V. Large-eddy simulation of thin film evaporation and condensation from a hot plate in enclosure: Second order statistics. Int. J. Heat Mass Transf.
**2017**, 115, 410–423. [Google Scholar] [CrossRef] - Petronio, A. Numerical Investigation of Condensation and Evaporation Effects Inside a Tub. Ph.D. Thesis, School of Environmental and Industrial Fluid Mechanics, University of Trieste, Trieste, Italy, 2010. [Google Scholar]
- Welty, J.; Wicks, C.; Rorrer, G.; Wilson, R. Fundamentals of Momentum, Heat and Mass Transfer; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals & Applications. Fifth Edition in SI Units; McGraw-Hill Education: New York, NY, USA, 2015; pp. 877–882.
- Sosnowski, P.; Petronio, A.; Armenio, V. Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer. Int. J. Heat Mass Transf.
**2013**, 66, 382–395. [Google Scholar] [CrossRef] - ESI-OpenCFD. OpenFOAM®, OpenCFD Ltd Release Version 2006. 2006. Available online: https://www.openfoam.com/news/main-news/openfoam-v20-06 (accessed on 3 January 2022).
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput.
**1986**, 1, 3–51. [Google Scholar] [CrossRef] - Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1st ed.; CRC Press: Boca Raton, FL, USA, 1980; p. 214. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf.
**1972**, 15, 1787–1806. [Google Scholar] [CrossRef] - Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Chew, L.W.; Aliabadi, A.A.; Norford, L.K. Flows across high aspect ratio street canyons: Reynolds number independence revisited. Environ. Fluid Mech.
**2018**, 18, 1275–1291. [Google Scholar] [CrossRef] - Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J. Wind. Eng. Ind. Aerodyn.
**1993**, 46-47, 145–153. [Google Scholar] [CrossRef] - Richards, P.; Norris, S. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind. Eng. Ind. Aerodyn.
**2011**, 99, 257–266. [Google Scholar] [CrossRef] - Hargreaves, D.; Wright, N. On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind. Eng. Ind. Aerodyn.
**2007**, 95, 355–369. [Google Scholar] [CrossRef] - Ricci, A.; Blocken, B. On the reliability of the 3D steady RANS approach in predicting microscale wind conditions in seaport areas: The case of the IJmuiden sea lock. J. Wind. Eng. Ind. Aerodyn.
**2020**, 207, 104437. [Google Scholar] [CrossRef] - Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; Technical Report; COST Action 732; COST Office: Brussels, Belgium, 2007. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind. Eng. Ind. Aerodyn.
**2008**, 96, 1749–1761. [Google Scholar] [CrossRef] - Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ.
**2015**, 91, 219–245. [Google Scholar] [CrossRef] [Green Version] - Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos. Environ.
**2007**, 41, 238–252. [Google Scholar] [CrossRef] - Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids-Eng.-Trans. ASME
**1994**, 116. [Google Scholar] [CrossRef] - Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech.
**1997**, 29, 123–160. [Google Scholar] [CrossRef] [Green Version] - Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res.
**2012**, 1, 197–228. [Google Scholar] [CrossRef] [Green Version] - Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ.
**2015**, 92, 152–166. [Google Scholar] [CrossRef] [Green Version] - Coceal, O.; Thomas, T.G.; Castro, I.P.; Belcher, S.E. Mean Flow and Turbulence Statistics Over Groups of Urban-like Cubical Obstacles. Bound.-Layer Meteorol.
**2006**, 121, 491–519. [Google Scholar] [CrossRef] - Allegrini, J.; Dorer, V.; Carmeliet, J. Wind tunnel measurements of buoyant flows in street canyons. Build. Environ.
**2013**, 59, 315–326. [Google Scholar] [CrossRef] - Kim, J.J.; Baik, J.J. A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons. J. Appl. Meteorol.
**1999**, 38, 1249–1261. [Google Scholar] [CrossRef] - Kim, J.J.; Baik, J.J. Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Adv. Atmos. Sci.
**2005**, 22, 230–237. [Google Scholar] [CrossRef] - Di Sabatino, S.; Barbano, F.; Brattich, E.; Pulvirenti, B. The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment. Atmosphere
**2020**, 11, 1186. [Google Scholar] [CrossRef]

**Figure 1.**Overview of the case study geometry and computational grid: (

**a**) schematic representation of the case geometry; (

**b**) sketch of the computational grid; (

**c**) sampling lines used for the analysis of the results.

**Figure 2.**Normalised profiles along a vertical sampling line in the middle of the open square ($y/H=0$) and up to a height of $z/H=1.5$ above the water body: (

**a**) streamwise velocity ($U/{U}_{0}$); (

**b**) temperature (${T}^{*}$); (

**c**) turbulent kinetic energy ($k/{{U}_{0}}^{2}$).

**Figure 3.**Normalised profiles along a horizontal sampling line in the middle of the open square ($y/H=0$) and at pedestrian level ($z/H=0.23$): (

**a**) streamwise velocity ($U/{U}_{0}$); (

**b**) temperature (${T}^{*}$); (

**c**) turbulent kinetic energy ($k/{{U}_{0}}^{2}$).

**Figure 4.**Velocity streamlines for the cases with a warmer water body ($\Delta T=+2$ K) of different size over a vertical plane at $y/H=0$ in the open square ($-1.5\le x/H\le 1.5$). Normalised velocity magnitude is depicted spatially in the background: (

**a**) baseline scenario; (

**b**) original size (S_1:1); (

**c**) half the original size (S_1:2); (

**d**) a quarter of the original size (S_1:4); (

**e**) one-eighth of the original size (S_1:8); (

**f**) one-sixteenth of the original size (S_1:16).

**Figure 5.**Velocity streamlines for the cases with a warmer water body ($\Delta T=+2$ K) of different sizes over a vertical plane at $y/H=0$ in the downwind canyons ($-0.5\le x/H\le 7.5$). Normalised velocity magnitude is depicted spatially in the background: (

**a**) baseline scenario; (

**b**) original size (S_1:1); (

**c**) half the original size (S_1:2); (

**d**) a quarter of the original size (S_1:4); (

**e**) one-eighth of the original size (S_1:8); (

**f**) one-sixteenth of the original size (S_1:16).

**Figure 6.**Velocity streamlines for the cases with a cooler water body ($\Delta T=-2$ K) with different sizes over a vertical plane at $y/H=0$ in the open square ($-1.5\le x/H\le 1.5$). Normalised velocity magnitude is depicted spatially in the background: (

**a**) baseline scenario; (

**b**) original size (S_1:1); (

**c**) one-eighth of the original size (S_1:8); (

**d**) one-sixteenth of the original size (S_1:16).

**Figure 7.**Profiles of normalised velocity ratios over a horizontal line across the middle of the domain ($y/H=0$) at pedestrian level ($z/H=0.23$) for the warm water body cases ($\Delta T=+2$ K) and for different water body sizes: (

**a**,

**b**) results within the open square ($-1.5\le x/H\le 1.5$) for streamwise ($U/{U}_{0}$) and vertical velocity ($W/{U}_{0}$), respectively; (

**c**,

**d**) results within the downwind canyons (DC1: $2.5\le x/H\le 3.5$, DC2: $4.5\le x/H\le 5.5$) for streamwise and vertical velocity, respectively.

**Figure 8.**Profiles of (

**a**) normalised streamwise ($U/{U}_{0}$) and (

**b**) normalised spanwise ($V/{U}_{0}$) velocity over a horizontal line in the middle of the street canyon ($y/H=1$) at pedestrian level ($z/H=0.23$) for the warm water body cases ($\Delta T=+2$ K) and different water body sizes. The shaded areas denote the position of the water body (blue) and the downwind canyons DC1 and DC2 (grey). The location of the open square is shown with the vertical dotted lines.

**Figure 9.**Profiles of (

**a**) normalised streamwise ($U/{U}_{0}$) and (

**b**) normalised spanwise ($V/{U}_{0}$) velocity over a horizontal line in the middle of the street canyon ($y/H=1$) at pedestrian level ($z/H=0.23$) for the cool water body cases ($\Delta T=-2$ K) and different water body sizes. The shaded areas denote the position of the water body (blue) and the downwind canyons DC1 and DC2 (grey). The location of the open square is shown with the vertical dotted lines.

**Figure 10.**Contours of normalised temperature (${T}^{*}$) and water vapour concentration (${\omega}^{*}$) over a vertical plane in the middle of the domain ($y/H=0$) for the warm water body cases ($\Delta T=+2$ K) and different water body sizes: (

**a**) original size (S_1:1). (

**b**) half the original size (S_1:2). (

**c**) a quarter of the original size (S_1:4); (

**d**) one-eighth of the original size (S_1:8); (

**e**) one-sixteenth of the original size (S_1:16).

**Figure 11.**Contours of normalised temperature (${T}^{*}$) and water vapour concentration (${\omega}^{*}$) over a horizontal plane at pedestrian level ($z/H=0.23$) for the warm water body cases ($\Delta T=+2$ K) and different water body sizes: (

**a**) original size (S_1:1); (

**b**) half the original size (s_1:2); (

**c**) a quarter of the original size (S_1:4); (

**d**) one-eighth of the original size (s_1:8); (

**e**) one-sixteenth of the original size (S_1:16).

**Figure 12.**Contours of normalised temperature (${T}^{*}$) and water vapour concentration (${\omega}^{*}$) over a horizontal plane at pedestrian level ($z/H=0.23$) for the cool water body cases ($\Delta T=-2$ K) and different water body sizes: (

**a**) original size (s_1:1); (

**b**) half the original size (s_1:2); (

**c**) a quarter of the original size (s_1:4); (

**d**) one-eighth of the original size (s_1:8); (

**e**) one-sixteenth of the original size (S_1:16).

**Figure 13.**Profiles of non-dimensional (

**a**,

**b**) vertical velocity ($W/{U}_{0}$), (

**c**,

**d**) TKE ($k/{{U}_{0}}^{2}$) and (

**e**,

**f**) vertical flux budget ($\langle uw\rangle /{{U}_{0}}^{2}$) over a horizontal line at roof level ($z/H=1$) across the domain’s centre line ($y/H=0$) for the warm water body cases and different sizes. Results for (

**a**,

**c**,

**e**) the open square and (

**b**,

**d**,

**f**) the downwind canyons; In panels (

**e**,

**f**), single lines denote mean values, whilst lines with points denote turbulent values.

**Figure 14.**Velocity streamlines for the cases with a cooler water body ($\Delta T=-2$ K) and different shapes over a vertical plane at $y/H=0$ in the open square ($-1.5\le x/H\le 1.5$). Normalised velocity magnitude is depicted spatially in the background: (

**a**) original square water body (LSI_1.1); (

**b**) LSI_1.2; (

**c**) LSI_1.4; (

**d**) LSI_1.6.

**Figure 15.**Profiles of normalised velocity ratios over a horizontal line across the middle of the domain ($y/H=0$) at pedestrian level ($z/H=0.23$) for the warm water body cases ($\Delta T=+2$ K) and for different water body shapes: (

**a**,

**b**) results within the open square ($-1.5\le x/H\le 1.5$) for streamwise ($U/{U}_{0}$) and vertical velocity ($W/{U}_{0}$), respectively; (

**c**,

**d**) results within the downwind canyons (DC1: $2.5\le x/H\le 3.5$, DC2: $4.5\le x/H\le 5.5$) for streamwise and vertical velocity, respectively.

**Figure 16.**Profiles of (

**a**) normalised streamwise ($U/{U}_{0}$) and (

**b**) normalised spanwise ($V/{U}_{0}$) velocity over a horizontal line in the middle of the street canyon ($y/H=1$) at pedestrian level ($z/H=0.23$) for the warm water body cases ($\Delta T=+2$ K) and different water body shapes. The shaded areas denote the position of the downwind canyons DC1 and DC2. The location of the open square is shown with the vertical dotted lines.

**Figure 17.**Profiles of (

**a**) normalised streamwise ($U/{U}_{0}$) and (

**b**) normalised spanwise ($V/{U}_{0}$) velocity over a horizontal line in the middle of the street canyon ($y/H=1$) at pedestrian level ($z/H=0.23$) for the cool water body cases ($\Delta T=-2$K) and different water body shapes. The shaded areas denote the position of the downwind canyons DC1 and DC2. The location of the open square is shown with the vertical dotted lines.

**Figure 18.**Contours of normalised temperature (${T}^{*}$) and water vapour concentration (${\omega}^{*}$) over a vertical plane in the middle of the domain ($y/H=0$) for the warm water body cases ($\Delta T=+2$ K) and different shapes: (

**a**) LSI_1.2; (

**b**) LSI_1.4; (

**c**) LSI_1.6; (

**d**) LSI_1.7; (

**e**) LSI_1.9; results of the original $LSI=1.1$ case can be found in Figure 11a.

**Figure 19.**Contours of normalised temperature (${T}^{*}$) and water vapour concentration (${\omega}^{*}$) over a horizontal plane at pedestrian level ($z/H=0.23$) for the cool water body cases ($\Delta T=-2$ K) and different shapes: (

**a**) $LSI=1.2$; (

**b**) $LSI=1.4$; (

**c**) $LSI=1.6$; (

**d**) $LSI=1.7$; (

**e**) $LSI=1.9$; results of the original $LSI=1.1$ case can be found in Figure 12a.

**Figure 20.**Profiles of non-dimensional (

**a**,

**b**) vertical velocity ($W/{U}_{0}$); (

**c**,

**d**) TKE ($k/{{U}_{0}}^{2}$); and (

**e**,

**f**) vertical flux budget ($\langle uw\rangle /{{U}_{0}}^{2}$) over a horizontal line at roof level ($z/H=1$) across the domain’s centre line ($y/H=0$) for the warm water body cases ($\Delta T=+2$ K) and different shapes. Results for (

**a**,

**c**,

**e**) the open square and (

**b**,

**d**,

**f**) the downwind canyons. In panels (

**e**,

**f**), single lines denote mean values, whilst lines with points denote turbulent values.

**Table 1.**Configuration settings and simulation outline for the simulations under consideration: characteristic airflow velocity (${U}_{0}$), air–water temperature difference ($\Delta {T}_{0}$), dimensionless parameters and simulations conducted for different sizes and shapes including simulation labels. For the definitions of the Richardson ($Ri$) and Grashof ($Gr$) numbers, the reader is referred to Ampatzidis et al. [22].

Airflow | Mixed Convection | ||
---|---|---|---|

Water | Baseline | Warmer | Cooler |

${U}_{0}$ [m/s] | 0.3 | 0.3 | 0.3 |

$\Delta {T}_{0}$ [K] | 0 | +2 | −2 |

$Ri$ | 0 | +1.9 | −1.7 |

$Re$ | $2.9\times {10}^{4}$ | $2.9\times {10}^{4}$ | $2.9\times {10}^{4}$ |

$Gr$ | – | 1.6$\times {10}^{9}$ | 1.4$\times {10}^{9}$ |

Size ($5\times 2$) | – | 1:1 (S_1:1) *, 1:2 (S_1:2), 1:4 (S_1:4), 1:8 (S_1:8), 1:16 (S_1:16) | |

$LSI$ ($6\times 2$) | – | 1.13 (LSI_1.1) *, 1.18 (LSI_1.2), 1.41 (LSI_1.4) | |

1.59 (LSI_1.6), 1.72 (LSI_1.7), 1.88 (LSI_1.9) |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ampatzidis, P.; Cintolesi, C.; Kershaw, T.
Impact of Blue Space Geometry on Urban Heat Island Mitigation. *Climate* **2023**, *11*, 28.
https://doi.org/10.3390/cli11020028

**AMA Style**

Ampatzidis P, Cintolesi C, Kershaw T.
Impact of Blue Space Geometry on Urban Heat Island Mitigation. *Climate*. 2023; 11(2):28.
https://doi.org/10.3390/cli11020028

**Chicago/Turabian Style**

Ampatzidis, Petros, Carlo Cintolesi, and Tristan Kershaw.
2023. "Impact of Blue Space Geometry on Urban Heat Island Mitigation" *Climate* 11, no. 2: 28.
https://doi.org/10.3390/cli11020028