Growth Response of Red Oaks to Climatic Conditions in the Lower Mississippi Alluvial Valley: Implications for Bottomland Hardwood Restoration with a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.3. Selecting the Most Appropriate Windows for Climate Variables
2.4. Estimating the Statistical Relationship between Annual Tree Ring Growth Rate and Climatic Conditions
2.5. Estimating the Impact of Climate Change on the Tree Ring Growth
3. Results
3.1. Most Appropriate Time Windows for Climate Variables
3.2. Relationships between Annual Radial Growth Rate and Climatic Conditions
3.3. Impacts of Climate Change on the Radial Growth Rate of Red Oaks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saikku, M. Down by the riverside: The disappearing bottomland hardwood forest of southeastern North America. Environ. Hist. 1996, 2, 77–95. [Google Scholar] [CrossRef]
- Kellison, R.C.; Young, M.J. The bottomland hardwood forest of the southern United States. For. Ecol. Manag. 1997, 90, 101–115. [Google Scholar] [CrossRef]
- England, J.R.; Paul, K.I.; Cunningham, S.C.; Madhavan, D.B.; Baker, T.G.; Read, Z.; Wilson, B.R.; Cavagnaro, T.R.; Lewis, T.; Perring, M.P. Previous land use and climate influence differences in soil organic carbon following reforestation of agricultural land with mixed-species plantings. Agric. Ecosyst. Environ. 2016, 227, 61–72. [Google Scholar] [CrossRef]
- Schneider, B.; Ehrhart, M.G.; Macey, W.H. Perspectives on organizational climate and culture. In APA Handbook of Industrial and Organizational psychology, Vol. 1. Building and Developing the Organization; American Psychological Association: Washington, DC, USA, 2011. [Google Scholar]
- Franzluebbers, A.J. Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States. Soil Sci. Soc. Am. J. 2010, 74, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- EPA. Bottomland Hardwoods. Available online: http://www.epa.gov/wetlands/forms/contact-us-about-wetlands (accessed on 15 November 2022).
- Wohl, E.; Lininger, K.B.; Baron, J. Land before water: The relative temporal sequence of human alteration of freshwater ecosystems in the conterminous United States. Anthropocene 2017, 18, 27–46. [Google Scholar] [CrossRef]
- Allen, J.A. Reforestation of bottomland hardwoods and the issue of woody species diversity. Restor. Ecol. 1997, 5, 125–134. [Google Scholar] [CrossRef]
- Lockhart, B.R.; Tappe, P.A.; Peitz, D.G.; Watt, C.A. Snag recruitment and mortality in a bottomland hardwood forest following partial harvesting: Second-year results. In Proceedings of the 14th Biennial Southern Silvicultural Research Conference, Athens, GA, USA, 26 February–1 March 2007; Stanturf, J.A., Ed.; Gen. Tech. Rep. SRS–121. US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2010; pp. 505–509. [Google Scholar]
- Heitmeyer, M.E.; Fredrickson, L.H. Fatty acid composition of wintering female mallards in relation to nutrient use. J. Wildl. Manag. 1990, 54, 54–61. [Google Scholar] [CrossRef]
- Smith, D.W.L. The southern hardwood region. In Regional Silviculture of the United State; Barret, J.W., Ed.; John Wiley and Son: New York, NY, USA, 1980; pp. 145–230. [Google Scholar]
- Oliver, C.D.; Burkhardt, E.C.; Skojac, D.A. The increasing scarcity of red oaks in Mississippi River floodplain forests: Influence of the residual overstory. For. Ecol. Manag. 2005, 210, 393–414. [Google Scholar] [CrossRef]
- Huang, J.; Abt, B.; Kindermann, G.; Ghosh, S. Empirical analysis of climate change impact on loblolly pine plantations in the southern United States. Nat. Resour. Model. 2011, 24, 445–476. [Google Scholar] [CrossRef]
- Rauscher, H.M.; Young, M.J.; Webb, C.D.; Robison, D.J. Testing the accuracy of growth and yield models for southern hardwood forests. South. J. Appl. For. 2000, 24, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Growth-Rings of Trees: Their Correlation with Climate. Science 1966, 154, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Stahle, D.W.; Cleaveland, M.K.; Hehr, J.G. North Carolina Climate Changes Reconstructed from Tree Rings: A.D. 372 to 1985. Science 1988, 240, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Salzer, M.W.; Hughes, M.K.; Bunn, A.G.; Kipfmueller, K.F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl. Acad. Sci. USA 2009, 106, 20348–20353. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Michaelsen, J.; Leavitt, S.W.; Still, C.J. Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef]
- Yang, B.; He, M.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Brauning, A.; Griessinger, J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef] [Green Version]
- Kirilenko, A.P.; Sedjo, R.A. Climate change impacts on forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cufar, K.; De Luis, M.; Eckstein, D.; Kajfez-Bogataj, L. Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int. J. Biometeorol. 2008, 52, 607–615. [Google Scholar] [CrossRef]
- Cufar, K.; Grabner, M.; Morgós, A.; Martínez del Castillo, E.; Merela, M.; de Luis, M. Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 2014, 28, 1267–1277. [Google Scholar] [CrossRef]
- Michelot, A.; Bréda, N.; Damesin, C.; Dufrêne, E. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For. Ecol. Manag. 2012, 265, 161–171. [Google Scholar] [CrossRef]
- Pilcher, J.R.; Gray, B. The Relationships between Oak Tree Growth and Climate in Britain. J. Ecol. 1982, 70, 297–304. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Rozas, V. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: Tree-ring growth responses to climate. Ann. For. Sci. 2005, 62, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Rozas, V.; García-González, I. Too wet for oaks? Inter-tree competition and recent persistent wetness predispose oaks to rainfall-induced dieback in Atlantic rainy forest. Glob. Planet. Chang. 2012, 94–95, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Fan, Z.; Matney, T.G.; Schultz, E.B. Growth and stem profiles of invasive Triadica sebifera in the Mississippi coast of the United States. For. Sci. 2017, 63, 569–576. [Google Scholar]
- NOAA RCCs. Applied Climate Information System. 2022. Available online: https://www.rcc-acis.org/ (accessed on 15 November 2022).
- PRISM Climate Group. PRISM Climate Data. 2014. Available online: https://prism.oregonstate.edu/ (accessed on 15 November 2022).
- Moss, R.H.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.A.; Elgizouli, I.; Emori, S.; Lin, E.; Hibbard, K. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2008. [Google Scholar]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Switanek, M.B.; Troch, P.A.; Castro, C.L.; Leuprecht, A.; Chang, H.I.; Mukherjee, R.; Demaria, E.M.C. Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes. Hydrol. Earth Syst. Sci. 2017, 21, 2649–2666. [Google Scholar] [CrossRef] [Green Version]
- Bai, K.; Chang, N.-B.; Yu, H.; Gao, W. Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations. Remote Sens. Environ. 2016, 182, 150–168. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Moghim, S.; McKnight, S.L.; Zhang, K.; Ebtehaj, A.M.; Knox, R.G.; Bras, R.L.; Moorcroft, P.R.; Wang, J. Bias-corrected data sets of climate model outputs at uniform space–time 2 resolution for land surface modelling over Amazonia. Int. J. Climatol. 2017, 37, 621–636. [Google Scholar] [CrossRef]
- Wilmking, M.; van der Maaten-Theunissen, M.; van der Maaten, E.; Scharnweber, T.; Buras, A.; Biermann, C.; Gurskaya, M.; Hallinger, M.; Lange, J.; Shetti, R.; et al. Global assessment of relationships between climate and tree growth. Glob. Chang. Biol. 2020, 26, 3212–3220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Liu, H.; Li, X.; Ciais, P.; Babst, F.; Guo, W.; Zhang, C.; Magliulo, V.; Pavelka, M.; Liu, S.; et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 2018, 24, 504–516. [Google Scholar] [CrossRef]
- Tei, S.; Sugimoto, A.; Yonenobu, H.; Matsuura, Y.; Osawa, A.; Sato, H.; Fujinuma, J.; Maximov, T. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob. Chang. Biol. 2017, 23, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Roibu, C.-C.; Sfeclă, V.; Mursa, A.; Ionita, M.; Nagavciuc, V.; Chiriloaei, F.; Leșan, I.; Popa, I. The Climatic Response of Tree Ring Width Components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe. Forests 2020, 11, 600. [Google Scholar] [CrossRef]
- Pol, M.; Bailey, L.D.; McLean, N.; Rijsdijk, L.; Lawson, C.R.; Brouwer, L.; Gimenez, O. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 2016, 7, 1246–1257. [Google Scholar] [CrossRef]
- Murtaugh, P.A. Performance of several variable-selection methods applied to real ecological data. Ecol. Lett. 2009, 12, 1061–1068. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Hebbali, A. olsrr: Tools for Building OLS Regression Models. 2020. Available online: https://cran.r-project.org/web/packages/olsrr/index.html (accessed on 15 November 2022).
- Yang, Z.; Midmore, D.J. Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecol. Model. 2005, 181, 59–77. [Google Scholar] [CrossRef]
- Barbaroux, C.; Bréda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef]
- Peters, R.L.; Steppe, K.; Cuny, H.E.; De Pauw, D.J.W.; Frank, D.C.; Schaub, M.; Rathgeber, C.B.K.; Cabon, A.; Fonti, P. Turgor–A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 2021, 229, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.M.; Hartmann, G. Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant Soil 1998, 203, 145–158. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant adaptations to anaerobic stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Parelle, J.; Brendel, O.; Bodénès, C.; Berveiller, D.; Dizengremel, P.; Jolivet, Y.; Dreyer, E. Differences in morphological and physiological responses to water-logging between two sympatric oak species (Quercus petraea [Matt.] Liebl., Quercus robur L.). Ann. For. Sci. 2006, 63, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Brienen, R.J.W.; Gloor, E.; Phillips, O.L.; Prior, L.D. Detecting trends in tree growth: Not so simple. Trends Plant Sci. 2013, 18, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, M.; Takata, K.; Hitsuma, G.; Yagihashi, T.; Noguchi, M.; Shibata, M.; Masaki, T. A novel growth model evaluating age–size effect on long-term trends in tree growth. Funct. Ecol. 2015, 29, 1250–1259. [Google Scholar] [CrossRef]
- Johnson, S.E.; Abrams, M.D. Age class, longevity and growth rate relationships: Protracted growth increases in old trees in the eastern United States. Tree Physiol. 2009, 29, 1317–1328. [Google Scholar] [CrossRef]
Independent Variable | Collinearity Statistics | ||||||
---|---|---|---|---|---|---|---|
β | Standard Error | Standard Beta | t-Value | p-Value | Tolerance | VIF | |
Constant | 51.463 | 1.918 | 26.84 | <0.001 | |||
Year | −0.026 | 0.001 | −0.761 | −25.68 | <0.001 | 0.57 | 1.75 |
Tmin(pDec, cJan) | 0.005 | 0.001 | 0.172 | 5.54 | <0.001 | 0.52 | 1.92 |
Tavg(pOct, pOct) | 0.007 | 0.001 | 0.168 | 5.71 | <0.001 | 0.58 | 1.72 |
P(cApr, cJul) | −0.011 | 0.003 | −0.151 | −3.99 | <0.001 | 0.35 | 2.84 |
Tmax(cJan, cAug) | −0.007 | 0.003 | −0.108 | −2.57 | 0.010 | 0.29 | 3.49 |
Tmin(pDec, cJan):DNUT | −0.001 | <0.001 | −0.155 | −6.87 | <0.001 | 0.99 | 1.01 |
Species | RCP 4.5 | RCP 8.5 | ||
---|---|---|---|---|
2030–2048 | 2080–2099 | 2030–2048 | 2080–2099 | |
Cherry bark & Shumard Oaks | 0.27 | 1.76 | 1.04 | 4.66 |
Nuttall Oak | 0.28 | 1.41 | 0.94 | 3.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Tian, N.; Gan, J.; Pelkki, M.; Mhotsha, O. Growth Response of Red Oaks to Climatic Conditions in the Lower Mississippi Alluvial Valley: Implications for Bottomland Hardwood Restoration with a Changing Climate. Climate 2023, 11, 10. https://doi.org/10.3390/cli11010010
Choi J, Tian N, Gan J, Pelkki M, Mhotsha O. Growth Response of Red Oaks to Climatic Conditions in the Lower Mississippi Alluvial Valley: Implications for Bottomland Hardwood Restoration with a Changing Climate. Climate. 2023; 11(1):10. https://doi.org/10.3390/cli11010010
Chicago/Turabian StyleChoi, Junyeong, Nana Tian, Jianbang Gan, Matthew Pelkki, and Ouname Mhotsha. 2023. "Growth Response of Red Oaks to Climatic Conditions in the Lower Mississippi Alluvial Valley: Implications for Bottomland Hardwood Restoration with a Changing Climate" Climate 11, no. 1: 10. https://doi.org/10.3390/cli11010010
APA StyleChoi, J., Tian, N., Gan, J., Pelkki, M., & Mhotsha, O. (2023). Growth Response of Red Oaks to Climatic Conditions in the Lower Mississippi Alluvial Valley: Implications for Bottomland Hardwood Restoration with a Changing Climate. Climate, 11(1), 10. https://doi.org/10.3390/cli11010010