Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational
Abstract
:1. Introduction
2. Updating the Linear Estimates: Evidence of Instability
2.1. Frankel and Poonawala’s Panel
2.2. The Extended Panel
3. The Changing Nature of Forward Rate Biasedness
3.1. More Frequent Structural Change
3.2. Is Not Always Less Than Unity
3.3. Two Key Patterns
3.3.1. Negative-Bias Subperiods Are More Frequent
3.3.2. Developed Countries Have Larger Biases
3.3.3. Origins of Linear Regression Results
4. Unpredictability and Imperfect Knowledge
5. Developed Countries Are More Risky Not Less Rational
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Country/Subperiod | Total # of Observations | Coefficient | Std. Error | Break Dates | Number of Months per Subperiod |
---|---|---|---|---|---|
Developed | |||||
Australia | 373 | −0.3082 | 0.5984 | 1999-06 | 175 |
−8.6771 | 13.7382 | 2001-02 | 20 | ||
−0.6493 | 1.1689 | 2008-06 | 88 | ||
−0.7285 | 2.8214 | 2010-1 | 19 | ||
0.4062 | 0.9101 | 71 | |||
Canada | 373 | −0.2389 | 0.9779 | 1987-04 | 29 |
−1.4654 | 1.0122 | 1989-11 | 31 | ||
0.2372 | 0.6406 | 1993-08 | 45 | ||
−2.6832 | 2.1780 | 1995-04 | 20 | ||
−1.2089 | 1.5584 | 2001-10 | 78 | ||
−9.5507 | 5.0584 | 2003-04 | 18 | ||
1.0208 | 3.9075 | 2006-02 | 34 | ||
7.5901 | 4.6161 | 2007-09 | 19 | ||
−19.5800 | 9.8565 | 2009-03 | 18 | ||
2.8892 | 2.4325 | 2014-06 | 63 | ||
19.6943 | 7.9364 | 18 | |||
Euro Area | 478 | 0.4528 | 0.7482 | 1978-11 | 33 |
0.0321 | 0.9964 | 1981-09 | 34 | ||
−2.1309 | 0.9799 | 1984-05 | 32 | ||
2.8425 | 1.1327 | 1988-1 | 44 | ||
0.0923 | 0.8849 | 1991-07 | 42 | ||
3.2566 | 4.2712 | 1995-04 | 45 | ||
−2.4436 | 1.1624 | 2000-12 | 68 | ||
−5.2466 | 2.1608 | 2005-1 | 49 | ||
0.4328 | 1.5662 | 2008-12 | 47 | ||
−1.8837 | 5.8379 | 2014-03 | 63 | ||
−7.3366 | 8.4644 | 21 | |||
Japan | 386 | 0.1118 | 1.0256 | 1990-09 | 83 |
1.8287 | 2.5877 | 1995-03 | 54 | ||
−1.9918 | 1.1511 | 1998-07 | 40 | ||
2.7793 | 1.8288 | 2000-02 | 19 | ||
−1.4243 | 0.6852 | 2007-05 | 87 | ||
5.6131 | 2.6862 | 2012-10 | 65 | ||
83.5468 | 30.6330 | 2014-05 | 19 | ||
−5.2268 | 9.2788 | 19 | |||
New Zealand | 492 | −2.2846 | 1.3259 | 1978-02 | 39 |
4.8323 | 1.8153 | 1980-09 | 31 | ||
−1.0799 | 1.8461 | 1984-10 | 49 | ||
2.7421 | 6.3360 | 1986-10 | 24 | ||
−0.6085 | 2.6035 | 1989-07 | 33 | ||
0.5230 | 0.6438 | 1996-05 | 82 | ||
−3.7483 | 2.4294 | 1998-05 | 24 | ||
−4.4428 | 1.6941 | 2006-06 | 97 | ||
6.6367 | 3.2458 | 2009-02 | 32 | ||
-20.5526 | 24.2922 | 2011-03 | 25 | ||
−1.7211 | 5.4291 | 56 | |||
Norway | 373 | −0.9166 | 1.0722 | 1986-11 | 24 |
−0.7687 | 0.6134 | 1989-12 | 37 | ||
0.0000 | NA | 1991-06 | 18 | ||
0.5360 | 1.0065 | 1993-04 | 22 | ||
2.7532 | 2.9482 | 1995-02 | 22 | ||
−1.7781 | 1.5888 | 2001-06 | 76 | ||
−1.0843 | 0.8722 | 2008-06 | 84 | ||
5.1275 | 3.4849 | 2009-12 | 18 | ||
1.6363 | 2.7222 | 2011-11 | 23 | ||
1.8358 | 2.6974 | 2014-05 | 30 | ||
15.1781 | 6.6951 | 19 | |||
Sweden | 373 | −2.4596 | 0.7969 | 1987-11 | 36 |
0.7971 | 2.1823 | 1989-08 | 21 | ||
0.1666 | 0.9902 | 1991-07 | 23 | ||
2.5192 | 1.6961 | 1993-1 | 18 | ||
−1.0084 | 1.2543 | 1998-12 | 71 | ||
−2.9010 | 1.8458 | 2001-05 | 29 | ||
−5.2160 | 1.5676 | 2005-10 | 53 | ||
2.6345 | 1.4783 | 2008-06 | 32 | ||
19.3950 | 5.7027 | 2010-04 | 22 | ||
0.8363 | 2.2597 | 2014-02 | 46 | ||
1.8842 | 7.1255 | 22 | |||
Switzerland | 386 | −0.4233 | 0.9348 | 1986-08 | 34 |
−0.6516 | 1.2321 | 1990-07 | 47 | ||
3.2036 | 3.0870 | 1992-03 | 20 | ||
−0.8667 | 0.7235 | 2007-05 | 182 | ||
4.2475 | 4.1783 | 2009-03 | 22 | ||
16.3319 | 12.9444 | 2010-12 | 21 | ||
−32.6304 | 27.5562 | 2012-07 | 19 | ||
−2.8336 | 6.4644 | 41 | |||
UK | 386 | −7.5512 | 2.8635 | 1985-06 | 20 |
−1.8967 | 1.3367 | 1987-05 | 23 | ||
−2.8908 | 2.3169 | 1988-12 | 19 | ||
−1.8905 | 1.2130 | 1990-09 | 21 | ||
1.1869 | 1.2998 | 1992-07 | 22 | ||
4.5790 | 1.5620 | 1994-06 | 23 | ||
−2.2244 | 1.3260 | 2003-04 | 106 | ||
−0.8953 | 2.4753 | 2004-11 | 19 | ||
4.4470 | 2.3033 | 2008-06 | 43 | ||
18.4322 | 10.6962 | 2010-1 | 19 | ||
−3.8585 | 6.7086 | 71 | |||
Developing | |||||
Argentina | 141 | −0.0958 | 0.5646 | 2004-11 | 8 |
0.7673 | 0.3107 | 2007-12 | 37 | ||
0.2887 | 0.0363 | 2008-12 | 12 | ||
0.4860 | 0.1059 | 2012-06 | 42 | ||
1.1154 | 0.2744 | 2013-12 | 18 | ||
0.3883 | 0.0672 | 2015-06 | 18 | ||
0.9347 | 0.0776 | 6 | |||
Brazil | 186 | 0.9088 | 0.0403 | 2002-12 | 30 |
0.9866 | 0.1477 | 2004-06 | 18 | ||
0.0000 | NA | 2006-05 | 23 | ||
0.0000 | NA | 2014-06 | 97 | ||
−0.0648 | 0.0248 | 18 | |||
Bulgaria | 141 | -3.5688 | 2.9220 | 2004-11 | 8 |
0.4379 | 1.4784 | 2008-06 | 43 | ||
0.4148 | 2.4357 | 2009-11 | 17 | ||
4.5024 | 5.9976 | 2011-05 | 18 | ||
13.7375 | 7.3284 | 2014-04 | 35 | ||
−55.6967 | 30.6570 | 20 | |||
Chile | 141 | −13.8590 | 17.0886 | 2005-06 | 15 |
−10.0127 | 17.1859 | 2007-1 | 19 | ||
−17.2676 | 7.8673 | 2008-02 | 13 | ||
0.7853 | 4.4646 | 2009-02 | 12 | ||
−2.5543 | 7.6903 | 2010-02 | 12 | ||
1.5528 | 2.8893 | 2011-09 | 19 | ||
1.3136 | 0.6464 | 51 | |||
China | 125 | 0.5924 | 0.1354 | 2007-08 | 25 |
0.7590 | 0.1756 | 2010-08 | 36 | ||
1.6309 | 0.5411 | 2012-1 | 17 | ||
−1.1263 | 0.3327 | 2013-12 | 23 | ||
0.1817 | 0.4695 | 2015-04 | 16 | ||
2.8581 | 1.6522 | 8 | |||
Colombia | 202 | 1.3873 | 0.3123 | 2006-07 | 89 |
−1.0140 | 0.4726 | 2008-06 | 23 | ||
1.8736 | 0.5124 | 2014-02 | 68 | ||
5.6470 | 2.7517 | 22 | |||
Czech Rep. | 228 | 0.8126 | 0.7866 | 1998-11 | 23 |
5.4488 | 4.3751 | 2001-05 | 30 | ||
−4.9186 | 1.9831 | 2005-10 | 53 | ||
2.7161 | 1.5110 | 2008-02 | 28 | ||
4.3070 | 10.2054 | 2010-03 | 25 | ||
−23.3166 | 29.1053 | 2011-05 | 14 | ||
−4.5362 | 4.3501 | 55 | |||
Hungary | 218 | 1.0809 | 0.2567 | 2000-09 | 35 |
−1.4584 | 0.6682 | 2003-04 | 31 | ||
−0.7277 | 0.4705 | 2005-10 | 30 | ||
−6.9917 | 3.8187 | 2006-11 | 13 | ||
−2.8764 | 2.3553 | 2008-06 | 19 | ||
1.6251 | 1.6403 | 2010-04 | 22 | ||
0.2695 | 1.9366 | 2011-12 | 20 | ||
0.4686 | 1.1248 | 48 | |||
India | 218 | 0.4456 | 0.1802 | 2002-05 | 55 |
−1.7245 | 0.4493 | 2004-03 | 22 | ||
−0.1465 | 0.9981 | 2006-06 | 27 | ||
−2.5408 | 0.9615 | 2008-03 | 21 | ||
0.5489 | 1.3950 | 2009-03 | 12 | ||
0.1722 | 2.2994 | 2010-03 | 12 | ||
−0.1679 | 0.7296 | 2011-03 | 12 | ||
1.2974 | 0.7176 | 2013-02 | 23 | ||
0.5237 | 0.5032 | 34 | |||
Indonesia | 228 | 3.8981 | 1.9813 | 1998-05 | 17 |
0.1566 | 0.1551 | 211 | |||
Israel | 210 | −0.4982 | 0.3219 | 2008-04 | 118 |
0.4819 | 0.7938 | 92 | |||
Kuwait | 307 | 1.7744 | 0.8420 | 1993 | 32 |
−0.3105 | 0.3083 | 2006-04 | 159 | ||
4.3963 | 1.7924 | 2007-11 | 19 | ||
3.7145 | 1.0172 | 2009-02 | 15 | ||
−0.5747 | 1.1904 | 2011-07 | 29 | ||
1.6385 | 0.6491 | 53 | |||
Malaysia | 125 | -4.2645 | 8.0502 | 2008-11 | 40 |
−0.0281 | 0.0172 | 85 | |||
Mexico | 228 | 0.6822 | 0.4218 | 1998-08 | 20 |
−0.1806 | 0.2565 | 2001-02 | 30 | ||
0.3187 | 0.7664 | 2003-02 | 24 | ||
−0.1820 | 0.4709 | 2006-05 | 39 | ||
1.5004 | 1.0725 | 2009-1 | 32 | ||
−1.0894 | 1.3735 | 2011-06 | 29 | ||
0.5518 | 1.1641 | 2014-08 | 38 | ||
6.8058 | 2.3260 | 16 | |||
Morocco | 141 | −0.1280 | 1.0689 | 2005-02 | 11 |
0.1180 | 0.4491 | 2008-05 | 39 | ||
−0.1794 | 0.5143 | 2009-11 | 18 | ||
1.8136 | 0.8844 | 2011-05 | 18 | ||
1.6589 | 0.8872 | 2012-07 | 14 | ||
−0.8132 | 0.6044 | 2014-07 | 24 | ||
1.1329 | 0.5115 | 17 | |||
Pakistan | 212 | 0.0638 | 0.0573 | 1999-04 | 12 |
1.3060 | 0.4875 | 2000-07 | 15 | ||
0.4743 | 0.2151 | 2008-02 | 91 | ||
0.5902 | 0.1446 | 94 | |||
Peru | 141 | 0.0831 | 0.4122 | 2005-07 | 16 |
−2.2890 | 1.7241 | 2007-08 | 25 | ||
2.4383 | 1.5624 | 2008-08 | 12 | ||
−0.8687 | 1.5976 | 2009-09 | 13 | ||
−2.1029 | 0.5409 | 2013 | 40 | ||
0.5476 | 0.3679 | 2014-07 | 18 | ||
1.5442 | 0.4653 | 17 | |||
Philippines | 228 | 2.5033 | 0.8389 | 1998-08 | 20 |
−0.9631 | 0.8221 | 2000-04 | 20 | ||
1.4522 | 0.8622 | 2001-06 | 14 | ||
0.3668 | 0.3465 | 2004-11 | 41 | ||
−2.0437 | 0.9682 | 2006-05 | 18 | ||
−6.1869 | 3.1264 | 2008-1 | 20 | ||
1.6098 | 1.1308 | 2009-07 | 18 | ||
−1.1853 | 0.6464 | 77 | |||
Poland | 232 | 0.6382 | 0.2803 | 2000-09 | 49 |
−0.5078 | 0.5407 | 2004-04 | 43 | ||
−3.4396 | 1.9701 | 2005-06 | 14 | ||
−1.2795 | 3.8595 | 2008-06 | 36 | ||
4.6760 | 2.9489 | 2010-11 | 29 | ||
2.8072 | 3.2026 | 2011-12 | 13 | ||
0.1432 | 1.4978 | 2014-06 | 30 | ||
9.3328 | 3.6071 | 18 | |||
Romania | 141 | −1.0197 | 0.5550 | 2005 | 10 |
−0.4703 | 1.7485 | 2007-10 | 33 | ||
1.6233 | 1.2055 | 2009-02 | 16 | ||
−0.1026 | 0.7470 | 2010-08 | 18 | ||
1.4124 | 1.5923 | 2012-07 | 23 | ||
−1.1989 | 1.2713 | 2014-06 | 23 | ||
10.5916 | 3.2499 | 18 | |||
Russia | 141 | 0.8047 | 0.4158 | 2005-06 | 15 |
−1.2353 | 1.1216 | 2006-10 | 16 | ||
−2.1772 | 1.7489 | 2008-06 | 20 | ||
2.0998 | 0.5678 | 2009-07 | 13 | ||
−1.2113 | 1.9413 | 2010-08 | 13 | ||
0.2709 | 3.1239 | 2011-09 | 13 | ||
0.6228 | 1.4569 | 2012-10 | 13 | ||
3.6984 | 1.4420 | 2014-10 | 24 | ||
1.7015 | 1.5434 | 14 | |||
South Africa | 307 | 0.8543 | 0.2783 | 1995-12 | 67 |
0.8414 | 0.7293 | 1997-03 | 15 | ||
2.8378 | 1.2608 | 1998-06 | 15 | ||
0.8760 | 0.7424 | 2001-08 | 38 | ||
−0.8895 | 1.2953 | 2003-04 | 20 | ||
−2.1292 | 1.5756 | 2004-11 | 19 | ||
1.1902 | 3.2008 | 2006-04 | 17 | ||
0.7352 | 2.2410 | 2007-11 | 19 | ||
0.7370 | 1.8149 | 2009-02 | 15 | ||
0.6433 | 0.7325 | 2013-08 | 54 | ||
0.0000 | NA | 28 | |||
South Korea | 213 | 1.2408 | 1.0681 | 1999-03 | 12 |
−8.5410 | 2.2965 | 2000-10 | 19 | ||
−0.3671 | 0.5255 | 2004-09 | 47 | ||
−0.4782 | 0.8521 | 2006-05 | 20 | ||
0.8593 | 0.4506 | 2008-1 | 20 | ||
0.6694 | 1.0405 | 2009-12 | 23 | ||
2.9395 | 0.4449 | 2011-04 | 16 | ||
0.4545 | 2.2550 | 2013-04 | 24 | ||
−1.0332 | 1.9164 | 32 | |||
Slovakia | 45 | −2.8608 | 1.1622 | 2004-1 | 23 |
−3.1858 | 2.0160 | 2005-02 | 22 | ||
0 | NA | ||||
Singapore | 373 | 0.5831 | 0.3100 | 1995-05 | 126 |
0.7140 | 1.3990 | 1997-12 | 31 | ||
0.9378 | 0.8768 | 2005-09 | 93 | ||
0.4908 | 0.6365 | 2008-11 | 38 | ||
2.0443 | 0.8051 | 2014-06 | 67 | ||
4.4078 | 3.8367 | 18 | |||
Taiwan | 228 | 4.3931 | 1.4556 | 1998-08 | 20 |
1.0372 | 0.9006 | 2000-08 | 24 | ||
0.5288 | 0.9851 | 2002-06 | 22 | ||
0.8003 | 0.4580 | 2008-02 | 68 | ||
−0.3337 | 0.6425 | 2010-12 | 34 | ||
−1.5819 | 2.7336 | 2014-08 | 44 | ||
−47.4316 | 15.4424 | 16 | |||
Thailand | 221 | −0.2435 | 0.7765 | 1998-12 | 17 |
−1.1262 | 1.1897 | 2001-06 | 30 | ||
−3.2605 | 2.2530 | 2002-06 | 12 | ||
−0.9522 | 0.4665 | 2007-06 | 60 | ||
0.8642 | 1.1569 | 2008-10 | 16 | ||
−0.9202 | 0.4696 | 2013-03 | 53 | ||
0.6895 | 0.6123 | 33 | |||
Turkey | 228 | 0.7387 | 0.0382 | 2001-1 | 49 |
−0.0219 | 0.0426 | 2002-1 | 12 | ||
0.0671 | 0.0286 | 2010-1 | 96 | ||
0.0322 | 0.0124 | 2014-1 | 48 | ||
0.0269 | 0.0244 | 23 |
References
- Ahmad, Rubi, Ghon Rhee, and Yuen Meng Wong. 2012. Foreign exchange market efficiency under recent crises: Asia-pacific focus. Journal of International Money and Finance 31: 1574–92. [Google Scholar] [CrossRef]
- Ang, Andrew, Joseph Chen, and Yuhang Xing. 2012. Downside risk. Review of Financial Studies 31: 1574–92. [Google Scholar]
- Ang, Andrew, and Alan Timmermann. 2012. Regime changes and financial markets. Annual Review of Financial Economics 4: 313–37. [Google Scholar] [CrossRef] [Green Version]
- Bai, Jushan, and Pierre Perron. 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66: 47–78. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 2003a. Critical values for multiple structural change tests. The Econometrics Journal 6: 72–78. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 2003b. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18: 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bai, Shuming, and Andre Varella Mollick. 2010. Currency crisis and the forward discount bias: Evidence from emerging economies under breaks. Journal of International Financial Markets, Institutions and Money 20: 556–74. [Google Scholar] [CrossRef]
- Baillie, Richard T., and Tim Bollerslev. 2000. The forward premium anomaly is not as bad as you think. Journal of International Money and Finance 19: 471–88. [Google Scholar] [CrossRef] [Green Version]
- Baillie, Richard T., and Dooyeon Cho. 2014. When carry trades in currency markets are not profitable. Review of Development Economics 18: 794–803. [Google Scholar] [CrossRef]
- Bansal, Ravi. 1997. An exploration of the forward premium puzzle in currency markets. Review of Financial Studies 10: 369–403. [Google Scholar] [CrossRef]
- Bansal, Ravi, and Magnus Dahlquist. 2000. The forward premium puzzle: Different tales from developed and emerging economies. Journal of International Economics 51: 115–44. [Google Scholar] [CrossRef]
- Beckmann, Joscha, Ansgar Belke, and Michael Kühl. 2006. The dollar-euro exchange rate and macroeconomic fundamentals: A time-varying coefficient approach. Review of World Economics 147: 11–40. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, Geert, and Robert J. Hodrick. 1993. On biases in the measurement of foreign exchange risk premiums. Journal of International Money and Finance 12: 115–38. [Google Scholar] [CrossRef] [Green Version]
- Bilson, John F. O. 1981. The speculative efficiency hypothesis. Journal of Business 54: 435–51. [Google Scholar] [CrossRef] [Green Version]
- Brunnermeier, Markus K., Stefan Nagel, and Lasse H. Pedersen. 2008. Carry trades and currency crashes. NBER Macroeconomics Annual 23: 313–47. [Google Scholar] [CrossRef] [Green Version]
- Burnside, Craig, Han Bing Hirshleifer David, and Tracy Yue Wang. 2011a. Investor overconfidence and the forward premium puzzle. Review of Economic Studies 78: 523–58. [Google Scholar] [CrossRef] [Green Version]
- Burnside, Craig, Martin S. Eichenbaum, and Sergio Rebelo. 2007. The returns to currency speculation in emerging markets. American Economic Review 97: 333–38. [Google Scholar] [CrossRef]
- Burnside, Craig, Martin S. Eichenbaum, and Sergio Rebelo. 2009. Understanding the forward premium puzzle: A microstructure approach. American Economic Journal: Macroeconomics 2: 127–54. [Google Scholar] [CrossRef] [Green Version]
- Burnside, Craig, Martin S. Eichenbaum, and Sergio Rebelo. 2011b. Carry trade and momentum in currency markets. NBER Working Paper, 16942. [Google Scholar]
- Cavusoglu, Nevin, Michael D. Goldberg, and Josh Stillwagon. 2020. Currency Returns and Downside risk: Debt, Volatility, and the Gap from Benchmark Values. Working Paper. Available online: https://www.ineteconomics.org/research/research-papers/new-evidence-on-the-portfolio-balance-approach-to-currency-returns (accessed on 30 October 2020).
- Chinn, Menzie D. 2006. The (partial) rehabilitation of interest rate parity in the floating rate era: Longer horizons, alternative expectations, and emerging markets. Journal of International Money and Finance 25: 7–21. [Google Scholar] [CrossRef] [Green Version]
- Clarida, Richard, Josh Davis, and Niels Pedersen. 2009. Currency carry trade regimes: Beyond the fama regression. Journal of International Money and Finance 28: 1373–89. [Google Scholar] [CrossRef] [Green Version]
- Clements, Michael P., and David F. Hendry. 1999. Forecasting Non- Stationary Economic Time Series. Cambridge: The MIT Press. [Google Scholar]
- Daniel, Kent, Robert J. Hodrick, and Zhongjin Lu. 2017. The Carry Trade: Risks and Drawdowns. Critical Finance Review 6: 211–262. [Google Scholar] [CrossRef]
- Deng, Ai, and Pierre Perron. 2008. A non-local perspective on the power properties of the cusum and cusum of squares tests for structural change. Journal of Econometrics 42: 212–40. [Google Scholar] [CrossRef]
- Engel, Charles A. 1996. The forward discount anomaly and the risk premium: A survey of recent evidence. Journal of Empirical Finance 3: 123–91. [Google Scholar] [CrossRef] [Green Version]
- Engel, Charles A. 2014. Exchange rates and interest parity. In Handbook of International Economics. Edited by Gita Gopinath, Elhanan Helpman and Kenneth Rogoff. Amsterdam: North-Holland, vol. IV, pp. 453–522. [Google Scholar]
- Fama, Eugene F. 1984. Forward and spot exchange rates. Journal of Monetary Economics 14: 319–38. [Google Scholar] [CrossRef]
- Flood, Robert P., and Andrew K. Rose. 2002. Uncovered Interest Parity in Crisis. International Monetary Fund Staff Papers 49: 252–66. [Google Scholar]
- Frankel, Jeffrey, and Jumana Poonawala. 2010. The forward market in emerging currencies: Less biased than in major currencies. Journal of International Money and Finance 29: 585–98. [Google Scholar] [CrossRef] [Green Version]
- Froot, Kenneth A., and Richard H. Thaler. 1990. Anomalies: Foreign exchange. Journal of Economic Perspectives 4: 179–92. [Google Scholar] [CrossRef]
- Frydman, Roman, Michael D. Goldberg, and Nicholas Mangee. 2015. Knightian uncertainty and stock-price movements: Why the reh present-value model failed empirically? Economics: The Open-Access, Open-Assessment E-Journal 9: 1–50. [Google Scholar] [CrossRef] [Green Version]
- Frydman, Roman, and Michael D. Goldberg. 2007. Imperfect Knowledge Economics: Exchange Rates and Risk. Princeton: Princeton University Press. [Google Scholar]
- Frydman, Roman, and Michael D. Goldberg. 2011. Beyond Mechanical Markets: Asset Price Swings, Risk, and the Role of the State. Princeton: Princeton University Press. [Google Scholar]
- Frydman, Roman, and Michael D. Goldberg. 2013a. Opening models of asset prices and risk to non-routine change. In Rethinking Expectations: The Way Forward for Macroeconomics. Edited by Roman Frydman and Edmund S. Phelps. Princeton: Princeton University Press, pp. 207–50. [Google Scholar]
- Frydman, Roman, and Michael D. Goldberg. 2013b. The imperfect knowledge imperative in modern macroeconomics and finance theory. In Rethinking Expectations: The Way Forward for Macroeconomics. Edited by Roman Frydman and Edmund S. Phelps. Princeton: Princeton University Press, pp. 130–65. [Google Scholar]
- Goldberg, Michael D., and Roman Frydman. 1996a. Imperfect knowledge and behavior in the foreign exchange market. Economic Journal 106: 869–93. [Google Scholar] [CrossRef]
- Goldberg, Michael D., and Roman Frydman. 1996b. Empirical exchange rate models and shifts in the co-integrating vector. Journal of Structural Change and Economic Dynamics 7: 55–78. [Google Scholar] [CrossRef]
- Goldberg, Michael, Olesia Kozlova, and Peter Sullivan. Forthcoming. Are currency returns really predictable?: Novel structural change and the forward rate anomaly. SSRN, forthcoming.
- Gourinchas, Pierre-Olivier, and Aaron Tornell. 2004. Exchange rate puzzles and distorted beliefs. Journal of International Economics 64: 303–33. [Google Scholar] [CrossRef] [Green Version]
- Goyal, Amit, and Ivo Welch. 2008. A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies 21: 1455–508. [Google Scholar]
- Hoover, Kevin D., Katarina Juselius, and Søren Johansen. 2008. Allowing the data to speak freely: The macroeconometrics of the cointegrated vector autoregression. American Economic Review 98: 251–55. [Google Scholar] [CrossRef] [Green Version]
- Ito, Hiro, and Menzie Chinn. 2007. Price-based measurement of financial globalization: A cross-country study of interest rate parity. Pacific Economic Review 12: 419–44. [Google Scholar] [CrossRef] [Green Version]
- Johansen, Sø ren, Katarina Juselius Roman Frydman, and Michael D. Goldberg. 2010. Testing hypotheses in an i(2) model with piece-wise linear trends. an analysis of the persistent long swings in the dmk/$ rate. Journal of Econometrics 158: 117–29. [Google Scholar] [CrossRef]
- Johansen, Sø ren, and Katarina Juselius. 1992. Testing structural hypotheses in a multivariate cointegration analysis of the ppp and the uip for uk. Journal of Econometrics 53: 211–44. [Google Scholar] [CrossRef]
- Jorion, Phillippe. 2009. Risk management lessons from the credit crisis. European Financial Management 15: 923–33. [Google Scholar] [CrossRef]
- Juselius, Katarina. 1992. Domestic and foreign effects on prices in an open economy: The case of denmark. Journal of Policy Modeling 14: 401–28. [Google Scholar] [CrossRef]
- Juselius, Katarina. 1995. Do the purchasing power parity and the uncovered interest rate parity hold in the long run?—an application of likelihood inference in a multivariate time series model. Journal of Econometrics 69: 211–40. [Google Scholar] [CrossRef]
- Juselius, Katarina. 2014. Testing for near i(2) trends when the signal-to-noise ratio is small. Economics—The Open-Access, Open-Assessment E-Journal 8: 1–30. [Google Scholar] [CrossRef] [Green Version]
- Juselius, Katarina. 2017a. A Cvar Scenario for a Standard Monetary Model Using Theory-Consistent Expectations. Discussion Papers 17-08. Copenhagen: Department of Economics, University of Copenhagen. [Google Scholar]
- Juselius, Katarina. 2017b. Using a theory-consistent cvar scenario to test an exchange rate model based on imperfect knowledge. Econometrics, MDPI, Open Access Journal 5: 1–20. [Google Scholar]
- Juselius, Katarina, and Katrin Assenmacher. 2017. Real exchange rate persistence and the excess return puzzle: The case of switzerland versus the us. Journal of Applied Econometrics 32: 1145–55. [Google Scholar] [CrossRef]
- Juselius, Katarina, and Ronald MacDonald. 2004. International parity relationships between the usa and japan. Japan and the World Economy 16: 17–34. [Google Scholar] [CrossRef]
- Juselius, Katarina, and Joshua Stillwagon. 2018. Are outcomes driving expectations or the other way around? an i(2) cvar analysis of interest rate expectations in the dollar/pound market. Journal of International Money and Finance 83: 93–105. [Google Scholar] [CrossRef]
- Knight, Frank Hyneman. 1921. Risk, Uncertainty and Profit. Boston: Houghton Mifflin, vol. 31. [Google Scholar]
- Lee, Byung-Joo. 2013. Uncovered interest parity puzzle: Asymmetric responses. International Review of Economics and Finance 27: 238–49. [Google Scholar] [CrossRef]
- Levich, Richard M. 1985. Empirical studies of exchange rates: Price behavior, rate determination and market efficiency. In Handbook of International Economics. Edited by Ronald W. Jones and Peter B. Kenen. Amsterdam: Elsevier, vol. 2, pp. 979–1040. [Google Scholar]
- Lewis, Karen K. 1995. Puzzles in international financial markets. In Handbook of International Economics. Edited by Gene M. Grossman and Kenneth Rogoff. Amsterdam: Elsevier, vol. 3, pp. 1913–17. [Google Scholar]
- Liu, Wei, and Alex Maynard. 2005. Testing forward rate unbiasedness allowing for persistent regressors. Journal of Empirical Finance 12: 613–28. [Google Scholar] [CrossRef]
- Lothian, James R., and Liuren Wu. 2011. Uncovered Interest- Rate Parity Over the Past Two Centuries. Journal of International Money and Finance 30: 448–73. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, Ronald, and Jun Nagayasu. 2015. Currency Forecast Errors and Carry Trades at Times of Low Interest Rates: Evidence From Survey Data on the Yen/Dollar Exchange Rate. Journal of International Money and Finance 53: 1–19. [Google Scholar] [CrossRef]
- Mark, Nelson C., and Yangru Wu. 1998. Rethinking deviations from uncovered interest parity: The role of covariance risk and noise. Economic Journal 108: 1686–786. [Google Scholar] [CrossRef]
- Maynard, Alex. 2003. Testing for forward-rate unbiasedness: On regression in levels and in returns. Review of Economics and Statistics 85: 313–27. [Google Scholar] [CrossRef]
- McDowell, Allen. 2004. From the help desk: Seemingly unrelated regression with unbalanced equations. The Stata Journal 4: 442–48. [Google Scholar] [CrossRef] [Green Version]
- Melvin, Michael, and Mark P. Taylor. 2009. The crisis in the foreign exchange market. Journal of International Money and Finance 28: 1317–30. [Google Scholar] [CrossRef] [Green Version]
- Menkhoff, Lukas, Lucio Sarno Maik Schmeling, and Andreas Schrimpf. 2012. Carry trades and global foreign exchange volatility. Journal of Finance 67: 681–718. [Google Scholar] [CrossRef] [Green Version]
- Moore, Michael J., and Maurice J. Roche. 2012. When does uncovered interest parity hold? Journal of International Money and Finance 31: 865–79. [Google Scholar] [CrossRef]
- Nelson, Charles R., and Myung J. Kim. 1993. Predictable stock returns: The role of small sample bias. Journal of Finance 48: 641–61. [Google Scholar] [CrossRef]
- Obstfeld, Maurice, Rogoff Kenneth S., and Wren-Lewis Simon. 1996. Foundations of International Macroeconomics. Cambridge: MIT Press, vol. 30. [Google Scholar]
- Olmo, Jose, and Keith Pilbeam. 2011. Uncovered interest parity and the efficiency of the foreign exchange market: A re-examination. International Journal of Economics and Finance 16: 189–204. [Google Scholar] [CrossRef]
- Perron, Pierre. 2006. Dealing with structural breaks. In Palgrave Handbook of Econometrics, Vol. 1: Econometric Theory. Edited by Kerry Patterson and Terence C. Mills. London: Palgrave Macmillan, pp. 278–352. [Google Scholar]
- Pettenuzzo, Davide, and Alan Timmermann. 2011. Predictability of stock returns and asset allocation under structural breaks. Journal of Econometrics 164: 60–78. [Google Scholar] [CrossRef]
- Phillip, Bacchetta, and Eric van Wincoop. 2010. Infrequent portfolio decisions: A solution to the forward discount puzzle. American Economic Review 3: 870–904. [Google Scholar]
- Sarno, Lucio. 2005. Towards a solution to the puzzles in exchange rate economics: Where do we stand? Canadian Journal of Economics 38: 673–708. [Google Scholar] [CrossRef]
- Stambaugh, Robert F. 2006. Predictive regressions. Journal of Financial Economics 54: 375–421. [Google Scholar] [CrossRef]
- Zhu, Zhen. 2002. Time-varying forward bias and the expected excess return. Journal of International Financial Markets, Institutions and Money 12: 119–37. [Google Scholar] [CrossRef]
1. | |
2. | See Burnside et al. (2011a); Gourinchas and Tornell (2004); Mark and Wu (1998); Phillip and van Wincoop (2010). |
3. | An IKE risk premium model is developed in (Frydman and Goldberg 2007, 2013a). |
4. | Juselius (1995) was the first to present evidence of this positive equilibrium relationship. See also (Juselius 1992, 2014, 2017a, 2017b); Cavusoglu et al. (2020); Frydman and Goldberg (2007); Hoover et al. (2008); Johansen and Juselius (1992); Johansen et al. (2010); Juselius and MacDonald (2004). See Brunnermeier et al. (2008), and Menkhoff et al. (2012) for additional evidence of downside risk in currency markets. In stock markets, see Ang et al. (2012). |
5. | For example, see Bansal and Dahlquist (2000); Chinn (2006); Flood and Rose (2002); Frankel and Poonawala (2010); Ito and Chinn (2007); Lee (2013). |
6. | To account for greater irrationality, Burnside et al. (2009) develop a model in which informed speculators’ access to private information matters more in developed countries. Burnside et al. (2011a) assumes that market participants systematically overreact to information about future inflation. Phillip and van Wincoop (2010) develop a model of rational inattention. |
7. | The BF regression also suffers from bias due to the much greater persistence in the forward premium compared with exchange rate changes. See Baillie and Bollerslev (2000); Liu and Maynard (2005); Maynard (2003); Nelson and Kim (1993); Olmo and Pilbeam (2011); Stambaugh (2006). |
8. | Goldberg et al. (Forthcoming) also find this kind of pronounced instability in for three developed countries. See also Bansal (1997); Clarida et al. (2009); Frydman and Goldberg (2007); Lothian and Wu (2011); Zhu (2002), and Baillie and Cho (2014). |
9. | The sample sizes are limited by the availability of forward rate data, which is more difficult to obtain. |
10. | |
11. | |
12. | Six of the developed euro-area countries’ samples extend farther back in time than in Frankel and Poonawala’s dataset. We could include the individual spot and forward rate series in the unbalanced SUR model, ending the samples in December 1998. However, the individual European currencies were bound together in an ERM before 1999, which involved monetary policy cooperation among countries. These countries are thus best viewed as a single region for the developed country group. Denmark was tied to the ECU/euro in an informal ERM over the entire sample and so we treat it like a euro-area country. |
13. | In general, the exchange rate series for any of the ERM/euro countries could be used as our euro-area series. We chose the Austrian spot and forward rate series since this country’s sample period is the longest among the euro countries (extending back to 1976). |
14. | We are indebted to the editors for this argument and the SAR example that follows. |
15. | SAR bid-asked prices were taken from a Bloomberg terminal. Bid-asked spreads are larger in the forward market. |
16. | An earlier version of the paper included the tightly pegged USD regimes in the SUR analysis. The results of this analysis (which are available on request) are slightly more favorable to our main arguments. |
17. | The WMR forward rate data that we use for a few of the developed countries and many of Frankel and Poonawala’s developing countries start one or more observations after their sample begins in December 1996. The full sample dates for each country in our panel are reported in column 2 of Table 1 and Table 2. |
18. | As in Frankel and Poonawala (2010), the balanced sample starts in October 1997. |
19. | Frankel and Poonawala drop Indonesia from the SUR analysis because their sample ends in February 2002. In order to facilitate a direct comparison, we also drop Indonesia from the analysis. |
20. | We estimate the pooled model as unbalanced, unlike Frankel and Poonawala. This enables us to keep all developing countries in the analysis. The unbalanced SUR’s time period is the same as in Frankel and Poonawala (2010). |
21. | The Wald test has finite sample limitations. However, it is a sensible choice here given that we do not have to estimate multiple models unlike other commonly employed multiple restriction tests. This is particularly advantageous because the unbalanced SUR model is computationally expensive compared to a balanced SUR model. The computational demands increase considerably in the model with subperiods as discussed below. |
22. | To carry out the test, we create a dummy variable for the Frankel and Poonawala sample period. We add this dummy, and interaction terms with the remaining regressors, and estimate another unbalanced SUR model. The Wald statistic provides a test of the joint significance of these terms. In order to distinguish the effects of the extended sample period and list of countries, we repeat the same procedure, but limit it to the Frankel and Poonawala (2010) countries only. We find a significant difference between the two samples. These results are available upon request. |
23. | |
24. | See also Ahmad et al. (2012), who finds that the Asian financial crisis triggered structural change in a panel of Asian-Pacific countries. |
25. | The testing procedure proceeds equation by equation and thus ignores cross-country correlations in the data. |
26. | We set the trimming level of the tests to 5%, as opposed to the commonly employed 15%. This decision allows for a wider portion of the sample to be considered in the test and relaxes the limit on the maximum number of allowed breaks. Relaxing this limit is important because we would expect many breaks for countries with the longest time series. |
27. | We also perform supF tests, which confirm our break number and dating results. |
28. | We also estimate an unbalanced SUR model without the one-year subperiod restriction for the full panel. A few slope estimates become very large. However, the estimates for the common/comparable subperiods are close in magnitude. These results are available upon request. |
29. | Alternative solutions to this problem include increasing the trimming parameter and/or imposing restrictions on the estimated coefficients, neither of which is suitable for our economic application. The former would limit the number of breaks, whereas there is no obvious bound to impose with the latter. |
30. | Johansen et al. (2010) and Juselius (2014) find that interest rate differentials (and thus the forward premium) are near I(2). Bai and Perron (1998) suggest modeling a dynamic context by either adding lagged values to the regression or employing a nonparametric correction. Deng and Perron (2008) show in the context of other structural change tests that a dynamic specification helps address the autorrelated-errors problem. |
31. | Bansal (1997); Clarida et al. (2009); Frydman and Goldberg (2007); Lothian and Wu (2011); Moore and Roche (2012); Zhu (2002), and Baillie and Cho (2014) also report negative and positive estimates of subperiod biases. |
32. | See Baillie and Cho (2014); Brunnermeier et al. (2008); Melvin and Taylor (2009), and Daniel et al. (2017) for additional evidence of this time dependency and riskiness. |
33. | The Wald tests in Table 9 consider the inidividual subsample biases, negative and positive, for developed and developing countries. The test is conducted under the null that the negative and positive biases for the two country groups are equal at mean. |
34. | Bekaert and Hodrick (1993) report that the large negative biases found for developing countries stem largely from behavior in the 1980s. |
35. | Each country’s sample begins with the observation right after the first break date in the 1990s. For example, the first break date in the 1990s for Australia is September 1993 (see Table A1). The truncated sample for this country therefore begins in October 1993. |
36. | Goyal and Welch (2008) report similar results for linear models of stock returns. |
37. | In currency markets, see Goldberg and Frydman (1996a, 1996b); Ahmad et al. (2012); Beckmann et al. (2006); Melvin and Taylor (2009), and Goldberg et al. (Forthcoming). In stock markets, see Pettenuzzo and Timmermann (2011); Frydman and Goldberg (2011); Ang and Timmermann (2012), and Frydman et al. (2015). |
38. | Brunnermeier et al. (2008), Daniel et al. (2017) and others find that carry trade returns are highly negatively skewed, which gives a measure of what they call âcrash or downside ârisk. These studies examine only developed-country markets. |
Developed Country | Full-Sample Time Period | FP (2010) | Rob. SE | Full Sample | Rob. SE |
---|---|---|---|---|---|
Australia | 12/84–01/16 | −6.5895 | 2.0660 | −1.0790 | 0.5862 |
Austria | 01/76–01/16 | −5.3837 | 2.1372 | 0.3473 | 0.5671 |
Belgium | 03/85–01/16 | −3.0095 | 2.0691 | −0.1430 | 0.0881 |
Canada | 12/84–01/16 | −3.1380 | 1.6270 | −0.5385 | 0.7371 |
Denmark | 12/84–01/16 | −5.5065 | 2.0821 | −0.0773 | 0.6478 |
Finland | 01/97–01/16 | −5.0479 | 1.5597 | −2.5680 | 1.5296 |
France | 01/97–01/16 | −4.9574 | 2.1393 | −2.3726 | 1.6716 |
Germany | 01/97–01/16 | −4.9477 | 2.0923 | −2.3906 | 1.6420 |
Greece | 01/97–01/16 | 2.8595 | 1.4633 | 1.6651 | 0.8928 |
Ireland | 08/86–01/16 | −5.5840 | 2.2778 | 0.2311 | 0.9550 |
Italy | 01/97–01/16 | −4.1536 | 2.1424 | −1.8370 | 1.7542 |
Japan | 10/83–01/16 | −1.5469 | 2.0916 | −1.1362 | 0.8807 |
Netherlands | 10/83–01/16 | −2.9514 | 2.0315 | −0.5618 | 0.7746 |
New Zealand | 01/75–01/16 | −7.7074 | 1.9594 | −0.3427 | 1.0636 |
Norway | 12/84–01/16 | −3.4212 | 1.2589 | −0.3790 | 0.7459 |
Portugal | 01/76–01/16 | −4.6132 | 2.3530 | 0.6550 | 0.1677 |
Spain | 08/86–01/16 | −5.3954 | 2.2810 | −0.9251 | 0.6121 |
Sweden | 12/84–01/16 | −5.0888 | 1.2093 | −0.1818 | 1.1258 |
Switzerland | 10/83–01/16 | −3.8778 | 2.2572 | −1.4289 | 1.0171 |
UK | 10/83–01/16 | −2.3769 | 2.8693 | −0.8198 | 1.5206 |
Average | −4.1219 | −0.6941 |
Developing Country | Full-Sample Time Period | Frankel and Poonawala (2010) | Rob. SE | Full Sample-FP Countries | Full Sample-Non-FP Countries | Rob. SE |
---|---|---|---|---|---|---|
Argentina | 04/04–01/16 | 0.8784 | 0.0766 | |||
Bahrain | 05/00–01/16 | −0.0418 | 0.0726 | |||
Brazil | 07/00–01/16 | 0.1155 | 0.1471 | |||
Bulgaria | 04/04–01/16 | 0.4697 | 1.9372 | |||
Chile | 04/04–01/16 | 1.9463 | 1.1836 | |||
China | 03/02–01/16 | 0.5732 | 0.1673 | |||
Colombia | 03/99–01/16 | 1.4912 | 0.4180 | |||
Czech Rep. | 01/97–01/16 | 1.3479 | 1.2396 | 1.0205 | 0.9551 | |
Estonia | 04/04–01/16 | −0.9089 | 1.3922 | |||
Hong Kong | 10/83–01/16 | 0.0593 | 0.0840 | 0.1259 | 0.0522 | |
Hungary | 11/97–01/16 | 1.1647 | 1.3719 | −0.887 | 0.7263 | |
India | 11/97–01/16 | −0.8749 | 0.4741 | −0.2024 | 0.5131 | |
Indonesia | 01/97–01/16 | 0.2430 | 0.2579 | 0.2541 | 0.2479 | |
Israel | 07/98–01/16 | −0.2879 | 0.3174 | |||
Kuwait | 06/90–01/16 | 0.6315 | 0.8120 | 1.3529 | 0.8039 | |
Latvia | 04/04–01/16 | −1.6891 | 0.8128 | |||
Lithuania | 04/04–01/16 | 0.3618 | 1.7082 | |||
Malaysia | 11/97–01/16 | −0.0354 | 0.0123 | |||
Mexico | 01/97–01/16 | −0.4879 | 0.3188 | −0.1656 | 0.2993 | |
Morocco | 04/04–01/16 | 0.3165 | 0.5727 | |||
Pakistan | 05/98–01/16 | 0.0792 | 0.0877 | |||
Peru | 04/04–01/16 | 0.9109 | 0.4792 | |||
Philippines | 01/97–01/16 | 1.1688 | 1.3846 | 1.4306 | 0.9806 | |
Poland | 09/96–01/16 | 0.6004 | 0.4437 | |||
Romania | 04/04–01/16 | −0.6929 | 1.0140 | |||
Russia | 04/04–01/16 | 2.5016 | 0.2242 | |||
S. Africa | 06/90–01/16 | −3.3386 | 1.7908 | −1.6162 | 1.0938 | |
S. Arabia | 06/90–01/16 | −0.0435 | 0.0265 | −0.0871 | 0.0539 | |
S. Korea | 04/98–01/16 | 0.5351 | 0.5648 | |||
Slovakia | 03/02–01/16 | −2.7064 | 0.8820 | |||
Slovenia | 04/04–01/16 | 1.1925 | 2.2092 | |||
Singapore | 12/84–01/16 | 1.1711 | 0.7445 | 0.9057 | 0.4659 | |
Taiwan | 01/97–01/16 | 0.8770 | 0.7308 | 0.7942 | 0.4810 | |
Thailand | 03/95–01/16 | 1.8896 | 0.3506 | 1.5830 | 0.5017 | |
Turkey | 01/97–01/16 | 0.0200 | 0.0348 | −0.0047 | 0.0225 | |
Average | 0.2734 | 0.3172 | 0.2671 |
Developed | |||||
---|---|---|---|---|---|
FP-2010 | SE | Full Sample | SE | ||
Australia | −0.6561 | 1.6124 | −0.4604 | 0.5696 | |
Canada | −0.6173 | 1.9678 | −0.3907 | 0.5672 | |
Denmark | −2.0294 | 1.0593 | |||
Euro Area | −1.938 | 0.8706 | 0.2353 | 0.4729 | |
Japan | 1.7178 | 1.7425 | −0.5107 | 0.7336 | |
New Zealand | −2.9392 | 1.9216 | −0.3512 | 0.8266 | |
Norway | −1.4489 | 0.8016 | −0.2112 | 0.4926 | |
Sweden | −2.2555 | 1.0263 | 0.0901 | 0.7325 | |
Switzerland | −2.4694 | 1.1320 | −1.2431 | 0.6492 | |
UK | −0.494 | 1.4048 | −0.7479 | 0.9238 | |
Developing | |||||
Argentina | 0.8454 | 0.1237 | |||
Bahrain | |||||
Brazil | 0.1048 | 0.0552 | |||
Bulgaria | 0.3218 | 1.5762 | |||
Chile | 1.0252 | 0.8838 | |||
China | 0.6377 | 0.1404 | |||
Colombia | 1.2850 | 0.3175 | |||
Czech Rep. | −0.3647 | 0.6256 | 0.5578 | 0.7574 | |
Hong Kong | 0.0429 | 0.0775 | |||
Hungary | −0.2275 | 0.6461 | 0.0323 | 0.2987 | |
India | −0.4344 | 0.3633 | 0.2357 | 0.3175 | |
Indonesia | 0.2687 | 0.1831 | |||
Israel | −0.3092 | 0.3427 | |||
Kuwait | 0.7167 | 0.4929 | 1.1272 | 0.4778 | |
Malaysia | −0.0312 | 0.0204 | |||
Mexico | −0.6581 | 0.4038 | 0.0914 | 0.2384 | |
Morocco | 0.3793 | 0.3645 | |||
Pakistan | 0.1020 | 0.0699 | |||
Peru | 0.6066 | 0.3893 | |||
Philippines | −0.5521 | 0.6393 | 1.0249 | 0.4946 | |
Poland | 0.2287 | 0.2664 | |||
Romania | −0.0605 | 0.4791 | |||
Russia | 2.0476 | 0.5626 | |||
S. Africa | −1.6594 | 1.3968 | 0.1044 | 0.4304 | |
S. Arabia | −0.073 | 0.0573 | |||
S. Korea | 0.5437 | 0.5122 | |||
Singapore | 0.5269 | 0.4559 | 0.8214 | 0.5338 | |
Slovakia | −2.3804 | 1.1016 | |||
Taiwan | 0.5754 | 0.4218 | 0.5437 | 0.4397 | |
Thailand | −1.1901 | 0.6349 | 0.2413 | 0.9797 | |
Turkey | 0.0103 | 0.0272 | 0.0059 | 0.0227 | |
FP vs. Full Sample p-value = 0.0000 |
Frankel and Poonawala (2010) | Full Sample | |||||
---|---|---|---|---|---|---|
p-Value ( = 0) | p-Value ( = 1) | p-Value ( = 0) | p-Value ( = 1) | |||
Developed | −1.2612 | 0.0200 | 0.0000 | −0.0096 | 0.7140 | 0.0000 |
−0.5404 | −0.0262 | |||||
Developing | 0.0289 | 0.0000 | 0.0512 | 0.0000 | ||
−0.0405 | 0.4750 | −0.0221 | 0.0200 |
a | ||||||||
# of | Ave # | # of | # of | # of | # of | # of | # of | |
Breaks | Per Decade | < 1 | > 1 | < 1 Signif. | > 1 Signif. | < 1 Per Decade | > 1 Per Decade | |
Australia | 4 | 1.2869 | 5 | 0 | 1 | 0 | 1.6086 | 0 |
Canada | 10 | 3.2172 | 7 | 4 | 4 | 1 | 2.252 | 1.2868 |
Euro Area | 10 | 2.5105 | 9 | 2 | 3 | 0 | 2.2594 | 0.5021 |
Japan | 7 | 2.1762 | 4 | 4 | 2 | 2 | 1.2435 | 1.2435 |
Norway | 10 | 3.2172 | 5 | 5 | 4 | 1 | 1.6086 | 1.6086 |
N. Zealand | 10 | 2.4390 | 8 | 3 | 3 | 2 | 1.9512 | 0.7317 |
Sweden | 10 | 3.2172 | 7 | 4 | 3 | 1 | 2.2520 | 1.2869 |
Switzerland | 7 | 2.1762 | 5 | 3 | 1 | 0 | 1.5544 | 0.9326 |
UK | 10 | 3.1088 | 7 | 4 | 5 | 1 | 2.1762 | 1.2435 |
AVE | 8.6667 | 2.5944 | 6.3333 | 3.2222 | 2.8889 | 0.8889 | 1.8784 | 0.9817 |
Columns 4 vs. 5 | Columns 6 vs. 7 | Columns 8 vs. 9 | ||||||
p-value | 0.0007 | 0.0022 | 0.0006 | |||||
b | ||||||||
Developing | # of | Ave # Breaks | # of | # of | # of | # of | # of | # of |
Country | Breaks | Per Decade | < 1 | > 1 | < 1 Signif. | > 1 Signif. | < 1 Per Decade | > 1 Per Decade |
Argentina | 6 | 5.1064 | 6 | 1 | 4 | 0 | 5.1064 | 0.8511 |
Brazil | 4 | 2.5806 | 3 | 0 | 2 | 0 | 1.9355 | 0.0000 |
Bulgaria | 5 | 4.2553 | 4 | 2 | 1 | 1 | 3.4043 | 1.7021 |
Chile | 6 | 5.1064 | 5 | 2 | 1 | 0 | 4.2553 | 1.7021 |
China | 5 | 4.7999 | 4 | 2 | 3 | 0 | 3.8400 | 1.9200 |
Colombia | 3 | 1.7822 | 1 | 3 | 1 | 2 | 0.5941 | 1.7822 |
Czech Rep. | 6 | 3.1579 | 4 | 3 | 1 | 0 | 2.1053 | 1.5789 |
Hungary | 7 | 3.8532 | 6 | 2 | 4 | 0 | 3.3028 | 1.1009 |
India | 8 | 4.4037 | 8 | 1 | 3 | 0 | 4.4037 | 0.5505 |
Indonesia | 1 | 0.5263 | 1 | 1 | 1 | 0 | 0.5263 | 0.5263 |
Israel | 1 | 0.5714 | 2 | 0 | 1 | 0 | 1.1429 | 0.0000 |
Kuwait | 5 | 1.9544 | 2 | 4 | 1 | 2 | 0.7818 | 1.5635 |
Malaysia | 1 | 0.9600 | 2 | 0 | 1 | 0 | 1.9200 | 0.0000 |
Mexico | 7 | 3.6842 | 6 | 2 | 2 | 1 | 3.1579 | 1.0526 |
Morocco | 6 | 5.1064 | 4 | 3 | 3 | 0 | 3.4043 | 2.5532 |
Pakistan | 3 | 1.6981 | 3 | 1 | 3 | 0 | 1.6981 | 0.5660 |
Peru | 6 | 5.1064 | 5 | 2 | 3 | 0 | 4.2553 | 1.7021 |
Philippines | 7 | 3.6842 | 5 | 3 | 5 | 1 | 2.6316 | 1.5789 |
Poland | 7 | 3.6207 | 5 | 3 | 2 | 1 | 2.5862 | 1.5517 |
Romania | 6 | 5.1064 | 4 | 3 | 2 | 1 | 3.4043 | 2.5532 |
Russia | 8 | 6.8085 | 6 | 3 | 2 | 2 | 5.1064 | 2.5532 |
South Africa | 10 | 3.9088 | 8 | 2 | 1 | 0 | 3.1270 | 0.7818 |
South Korea | 8 | 4.5070 | 7 | 2 | 3 | 1 | 3.9437 | 1.1268 |
Slovakia | 2 | 1.4458 | 2 | 0 | 2 | 0 | 1.4458 | 0.0000 |
Singapore | 5 | 1.6086 | 4 | 2 | 0 | 0 | 1.2869 | 0.6434 |
Taiwan | 6 | 3.1579 | 5 | 2 | 2 | 1 | 2.6316 | 1.0526 |
Thailand | 6 | 3.2579 | 6 | 1 | 3 | 0 | 3.2579 | 0.5430 |
Turkey | 4 | 2.1053 | 5 | 0 | 5 | 0 | 2.6316 | 0.0000 |
Ave. | 5.3214 | 3.3523 | 4.3929 | 1.7857 | 2.2143 | 0.4643 | 2.7817 | 1.1263 |
p-value | Columns 4 vs. 50.0000 | Columns 6 vs. 7 0.0000 | Columns 8 vs. 90.0000 |
Ave # of Breaks Per Decade | # of Pos/Neg Biases | (# of Pos/Neg Biases )/# of Decades | |
---|---|---|---|
Developed | 2.5944 | 0.5457 | 0.1680 |
Developing | 3.3523 | 0.5230 | 0.3171 |
p-value | 0.0531 | 0.8891 | 0.0598 |
Full Sample | Ave | Ave | Ave Signif | Ave Signif | WAve | WAve |
---|---|---|---|---|---|---|
Developed Country | < 0 | > 0 | < 0 | > 0 | < 0 | > 0 |
Australia | −2.9914 | NA | NA | NA | −1.7228 | NA |
Canada | −5.9271 | 6.7986 | −20.58 | 18.6943 | −3.9874 | 4.3390 |
Euro Area | −3.0035 | 2.0495 | −4.2737 | 1.8425 | −2.861 | 2.0519 |
Japan | −3.1328 | 22.4420 | −2.4243 | 43.5799 | −2.2822 | 12.4000 |
Norway | −1.8024 | 4.3062 | NA | 14.1781 | −1.9779 | 3.7675 |
N. Zealand | −5.2393 | 3.7370 | −5.4428 | 4.7345 | −4.0872 | 3.9194 |
Sweden | −2.3979 | 5.6082 | −4.8378 | 18.3950 | −2.6548 | 5.3595 |
Switzerland | −8.4811 | 6.9277 | NA | NA | −3.9068 | 6.9442 |
UK | −4.0296 | 6.1613 | −8.5512 | 3.5790 | −3.9248 | 5.2884 |
AVE | −4.1117 | 7.2538 | −7.685 | 15.0005 | −3.0450 | 5.5087 |
Full Sample | Ave | Ave | Ave Signif | Ave Signif | WAve | WAve |
---|---|---|---|---|---|---|
Developing Country | < 0 | < 0 | < 0 | < 0 | < 0 | < 0 |
Argentina | −0.5385 | 0.1154 | −0.427 | 0.1154 | −0.4789 | 0.1154 |
Brazil | −0.3912 | NA | −0.5771 | NA | −0.148 | NA |
Bulgaria | −15.6032 | 8.1199 | NA | NA | −13.6887 | 9.6010 |
Chile | −9.5817 | 0.4332 | −18.2676 | 0.3136 | −10.0681 | 0.3785 |
China | −0.8983 | 1.2445 | −0.925 | 0.6309 | −0.8086 | 1.0236 |
Colombia | −2.014 | 1.9693 | −2.014 | 1.9693 | −2.014 | 1.0956 |
Czech Rep. | −8.9897 | 3.1573 | −5.9186 | NA | −6.6408 | 3.1830 |
Hungary | −2.886 | 0.3530 | −2.4584 | 0.0809 | −2.1472 | 0.2909 |
India | −1.3612 | 0.2974 | −2.2732 | NA | −1.2374 | 0.2974 |
Indonesia | −0.8434 | 2.8981 | NA | 2.8981 | −0.8434 | 2.8981 |
Israel | −1.0081 | NA | NA | NA | −1.0689 | NA |
Kuwait | −1.4426 | 1.8809 | NA | 1.8809 | −1.3513 | 1.3770 |
Malaysia | −3.1463 | NA | NA | NA | −2.3838 | NA |
Mexico | −0.9832 | 3.1531 | NA | 5.8058 | −1.0102 | 2.2689 |
Morocco | −1.2506 | 0.5352 | NA | 0.4733 | −1.2125 | 0.5333 |
Pakistan | −0.6239 | 0.3060 | −0.4678 | 0.3060 | −0.4954 | 0.3060 |
Peru | −1.926 | 0.9912 | −3.1029 | 0.5442 | −2.263 | 0.9142 |
Philippines | −3.0746 | 0.8712 | −3.0746 | 1.5622 | −2.4908 | 0.9241 |
Poland | −1.8891 | 4.6053 | −0.3618 | 8.3328 | −1.4679 | 4.6682 |
Romania | −1.6979 | 3.5425 | NA | 9.5916 | −1.6564 | 3.3703 |
Russia | −1.4876 | 1.4999 | NA | 1.8991 | −1.6152 | 1.7428 |
S. Africa | −0.7914 | 1.0140 | −0.1457 | 1.8378 | −0.5176 | NA |
S. Korea | −2.2052 | 1.0901 | −9.541 | 1.9395 | −1.9658 | 1.2115 |
Slovakia | −4.0233 | NA | −3.8608 | NA | −4.0197 | NA |
Singapore | −0.3186 | 2.2261 | NA | 1.0443 | −0.3005 | 1.5448 |
Taiwan | −10.6036 | 1.7152 | −48.4316 | 3.3931 | −5.2055 | 1.5626 |
Thailand | −1.7939 | 0.4889 | −3.1215 | 0.4889 | −1.687 | 0.4889 |
Turkey | −0.8314 | NA | −0.7207 | NA | −0.8047 | NA |
AVE | −2.9359 | 1.8482 | −5.8716 | 2.2554 | −2.4854 | 1.8089 |
Ave | Ave | Ave Signif. | Ave Signif. | Ave | Ave | Ave Signif. | Ave Signif. | |
---|---|---|---|---|---|---|---|---|
1990s–2016 | 1990s–2016 | |||||||
< 0 | >0 | < 0 | > 0 | < 0 | > 0 | < 0 | > 0 | |
Developed | −4.1117 | 7.2538 | −7.685 | 15.0005 | −5.2049 | 7.5580 | −8.7729 | 17.7866 |
Developing | −2.9359 | 1.8482 | −5.8716 | 2.2554 | −2.9347 | 1.8482 | −5.8716 | 2.2554 |
p-value | 0.1581 | 0.0006 | 0.0002 | 0.0000 | 0.0610 | 0.0000 | 0.0540 | 0.0001 |
1990s–2016 | Ave | Ave | Ave Signif | Ave Signif | WAve | WAve |
---|---|---|---|---|---|---|
Developed Country | < 0 | > 0 | < 0 | > 0 | < 0 | > 0 |
Australia | −3.4122 | NA | NA | NA | −1.1091 | NA |
Canada | −6.7085 | 6.7986 | −20.58 | 18.6943 | −3.8371 | 4.3390 |
Euro Area | −4.2955 | 2.2566 | −4.8451 | NA | −2.3744 | 1.1410 |
Japan | −3.881 | 22.4420 | −2.4243 | 43.5799 | −1.9602 | 12.4000 |
Norway | −1.7755 | 4.3062 | NA | 14.1781 | −1.5509 | 3.7675 |
N. Zealand | −8.6162 | 5.6367 | −5.4428 | 5.6367 | −3.2916 | 2.0733 |
Sweden | −3.0723 | 5.6082 | −6.216 | 18.3950 | −2.1244 | 5.3595 |
Switzerland | −13.1124 | 6.9277 | NA | NA | −3.5167 | 6.9442 |
UK | −3.3261 | 6.1613 | NA | 3.5790 | −2.5905 | 5.2884 |
AVE | −5.3556 | 7.5172 | −7.9016 | 17.3438 | −2.4839 | 5.1641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldberg, M.D.; Kozlova, O.; Ozabaci, D. Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational. Econometrics 2020, 8, 43. https://doi.org/10.3390/econometrics8040043
Goldberg MD, Kozlova O, Ozabaci D. Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational. Econometrics. 2020; 8(4):43. https://doi.org/10.3390/econometrics8040043
Chicago/Turabian StyleGoldberg, Michael D., Olesia Kozlova, and Deniz Ozabaci. 2020. "Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational" Econometrics 8, no. 4: 43. https://doi.org/10.3390/econometrics8040043
APA StyleGoldberg, M. D., Kozlova, O., & Ozabaci, D. (2020). Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational. Econometrics, 8(4), 43. https://doi.org/10.3390/econometrics8040043