Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data
Abstract
:1. Introduction
2. Methods
2.1. Log Periodogram Regression
2.2. Smoothing the Periodogram
2.3. Using Subsamples
3. Simulations
4. Empirical Results
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adenstedt, Rolf K. 1974. On Large-Sample Estimation for the Mean of Stationary Random Sequence. The Annals of Statistics 2: 1095–107. [Google Scholar] [CrossRef]
- Andrews, Donald W. K. 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59: 817–58. [Google Scholar] [CrossRef]
- Auer, Benjamin R. 2016a. On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations. Finance Research Letters 16: 255–67. [Google Scholar] [CrossRef]
- Auer, Benjamin R. 2016b. On time-varying predictability of emerging stock market returns. Emerging Markets Review 27: 1–13. [Google Scholar] [CrossRef]
- Barkoulas, John T., and Christopher F. Baum. 1996. Long-term dependence in stock returns. Economic Letters 53: 253–59. [Google Scholar] [CrossRef] [Green Version]
- Barkoulas, John T., Christopher F. Baum, and Nickolas Travlos. 2000. Long memory in the Greek stock market. Applied Financial Economics 10: 177–84. [Google Scholar] [CrossRef]
- Batten, Jonathan A., and Peter G. Szilagyi. 2007. Covered interest parity arbitrage and long-term dependence between the US dollar and the Yen. Physica A 376: 409–21. [Google Scholar] [CrossRef]
- Batten, Jonathan A., Craig A. Ellis, and Thomas A. Fethertson. 2008. Sample period selection and long-term dependence: New evidence from the Dow Jones Index. Chaos, Solitons Fractals 36: 1126–40. [Google Scholar] [CrossRef]
- Batten, Jonathan, Cetin Ciner, Brian M. Lucey, and Peter G. Szilagyi. 2013. The structure of gold and silver spread returns. Quantitative Finance 13: 561–70. [Google Scholar] [CrossRef]
- Cajueiro, Daniel O., and Benjamin M. Tabak. 2004. The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient. Physica A 336: 521–37. [Google Scholar] [CrossRef]
- Carbone, Anna, Giuliano Castelli, and H. Eugene Stanley. 2004. Time-dependent Hurst exponent in financial time series. Physica A 344: 267–71. [Google Scholar] [CrossRef]
- Chen, Gemai, Bovas Abraham, and Shelton Peiris. 1994. Lag window estimation of the degree of differencing in fractionally integrated time series models. Journal of Time Series Analysis 15: 473–87. [Google Scholar] [CrossRef]
- Cheung, Yin-Wong, and Kon S. Lai. 1995. A search for long memory in international stock market returns. Journal of International Money and Finance 14: 597–615. [Google Scholar] [CrossRef]
- Crato, Nuno. 1994. Some international evidence regarding the stochastic behaviour of stock returns. Applied Financial Economics 4: 33–39. [Google Scholar] [CrossRef]
- Crato, Nuno, and Pedro J. F. de Lima. 1994. Long-range dependence in the conditional variance of stock returns. Economics Letters 45: 281–85. [Google Scholar] [CrossRef]
- Davis, Robert, and David Harte. 1987. Tests of the Hurst effect. Biometrika 74: 95–101. [Google Scholar] [CrossRef]
- Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis 4: 221–38. [Google Scholar] [CrossRef]
- Granger, Clive W. J., and Roselyne Joyeux. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15–29. [Google Scholar] [CrossRef]
- Grau-Carles, Pilar. 2000. Empirical evidence of long-range correlations in stock returns. Physica A 287: 396–404. [Google Scholar] [CrossRef]
- Greene, Myron T., and Bruce D. Fielitz. 1977. Long term dependence in common stock eturns. Journal of Financial Economics 4: 339–49. [Google Scholar] [CrossRef]
- Hassler, Uwe. 1993. Regression of spectral estimators with fractionally integrated time series. Journal of Time Series Analysis 14: 369–80. [Google Scholar] [CrossRef]
- Hauser, Michael A., and Erhard Reschenhofer. 1995. Estimation of the fractionally differencing parameter with the R/S method. Computational Statistics & Data Analysis 20: 569–79. [Google Scholar]
- Henry, Ólan T. 2002. Long memory in stock returns: Some international evidence. Applied Financial Economics 12: 725–29. [Google Scholar] [CrossRef] [Green Version]
- Hosking, Jonathan R. M. 1981. Fractional differencing. Biometrika 68: 165–76. [Google Scholar] [CrossRef]
- Hunt, R. L., M. Shelton Peiris, and N. C. Weber. 2003. The bias of lag window estimators of the fractional difference parameter. Journal of Applied Mathematics and Computing 12: 67–79. [Google Scholar] [CrossRef]
- Hurst, Harold E. 1951. Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116: 770–99. [Google Scholar]
- Hurvich, Clifford M., and Kaizo I. Beltrao. 1993. Asymptotics for the low-freqeuncy ordinates of the periodogram of a long-memory time series. Journal of Time Series Analysis 14: 455–72. [Google Scholar] [CrossRef]
- Hurvich, Clifford M., Rohit Deo, and Julia Brodsky. 1998. ‘The mean square error of Geweke and Porter-Hudak’s estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis 19: 19–46. [Google Scholar] [CrossRef]
- Künsch, Hans-Rudolf. 1986. Discrimination between monotonic trends and long-range dependence. Journal of Applied Probability 23: 1025–30. [Google Scholar] [CrossRef]
- Lo, Andrew. 1991. Long-term memory in stock market prices. Econometrica 59: 1279–313. [Google Scholar] [CrossRef]
- Lobato, Ignacio N., and N. E. Savin. 1998. Real and spurious long-memory properties of stock-market data. Journal of Business & Economic Statistics 16: 261–68. [Google Scholar]
- Mandelbrot, Benoît. 1971. When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. The Review of Economics and Statistics 53: 225–36. [Google Scholar] [CrossRef]
- Mandelbrot, Benoît. 1972. Statistical methodology for non-periodic cycles: From the covariance to R/S analysis. Annals of Economic and Social Measurement 1: 259–90. [Google Scholar]
- Mandelbrot, Benoît. 1975. Limit theorems on the delf.-normalized range for weakly and strongly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31: 271–85. [Google Scholar] [CrossRef]
- Mandelbrot, Benoît, and James Wallis. 1969. Computer experiments with fractional Gaussian noises. Parts 1, 2, 3. Water Resources Research 4: 909–18. [Google Scholar] [CrossRef] [Green Version]
- Mangat, Manveer K., and Erhard Reschenhofer. 2019. Testing for long-range dependence in financial time series. Central European Journal of Economic Modelling and Econometrics 11: 93–106. [Google Scholar]
- Newey, Whitney K., and Kenneth D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–8. [Google Scholar] [CrossRef]
- Peiris, M. Shelton, and J. R. Court. 1993. A note on the estimation of degree of differencing in long memory time series analysis. Probability and Mathematical Statistics 14: 223–29. [Google Scholar]
- Pötscher, Benedikt M. 2002. Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica 70: 1035–65. [Google Scholar] [CrossRef]
- R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
- Reisen, Valderio A. 1994. Estimation of the fractional difference parameter in the ARIMA(p,d,q) model using the smoothed periodogram. Journal of Time Series Analysis 15: 335–50. [Google Scholar] [CrossRef]
- Reisen, Valderio A., Bovas Abraham, and Silvia Lopes. 2001. Estimation of parameters in ARFIMA processes: A simulation study. Communications in Statistics: Simulation and Computation 30: 787–803. [Google Scholar] [CrossRef]
- Reschenhofer, Erhard, and Manveer K. Mangat. 2020. Detecting long-range dependence with truncated ratios of periodogram ordinates. Communications in Statistics—Theory and Methods. [Google Scholar] [CrossRef] [Green Version]
- Reschenhofer, Erhard, Manveer K. Mangat, and Thomas Stark. 2020. Improved estimation of the memory parameter. Theoretical Economics Letters 10: 47–68. [Google Scholar] [CrossRef] [Green Version]
- Robinson, Peter M. 1995. Log-periodogram regression of time series with long range dependence. Annals of Statistics 23: 1048–72. [Google Scholar] [CrossRef]
- Souza, Sergio, Benjamin M. Tabak, and Daniel O. Cajueiro. 2008. Long-range dependence in exchange rates: The case of the European monetary system. International Journal of Theoretical and Applied Finance 11: 199–223. [Google Scholar] [CrossRef] [Green Version]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1 | 0.1475 | 0.0186 | 0.0072 | 0.0044 | 0.0027 | 0.0014 | 0.0013 | 0.001 | 0.0008 | 0.0005 |
2 | 0.3541 | 0.0002 | −0.0001 | −0.0004 | 0 | 0.0003 | −0.0003 | 0.0002 | 0.0002 | 0.0005 |
3 | 0.1364 | 0.133 | 0.0154 | 0.006 | 0.0032 | 0.0025 | 0.0009 | 0.001 | 0.0007 | 0.0003 |
4 | −0.0001 | 0.3541 | −0.0001 | −0.0002 | 0.0002 | 0.0008 | −0.0005 | −0.0002 | −0.0004 | −0.0003 |
5 | 0.0164 | 0.1316 | 0.1307 | 0.0144 | 0.005 | 0.0027 | 0.0019 | 0.0016 | 0.0008 | 0.0008 |
6 | −0.0001 | −0.0003 | 0.354 | 0.0002 | 0.0002 | −0.0004 | 0.0004 | 0.0001 | −0.0005 | 0.0005 |
7 | 0.007 | 0.0147 | 0.1311 | 0.1308 | 0.014 | 0.0043 | 0.0025 | 0.0021 | 0.0013 | 0.0011 |
8 | 0 | 0.0001 | 0.0004 | 0.3541 | 0.0004 | 0.0001 | −0.0001 | −0.0002 | −0.0001 | −0.0002 |
9 | 0.0035 | 0.0054 | 0.0143 | 0.1302 | 0.1302 | 0.0139 | 0.0051 | 0.003 | 0.0016 | 0.0009 |
10 | −0.0003 | 0 | −0.0001 | 0.0004 | 0.3539 | −0.0003 | 0.0003 | 0.0001 | −0.0005 | 0.0003 |
11 | 0.0023 | 0.0033 | 0.0047 | 0.0138 | 0.1301 | 0.13 | 0.0133 | 0.0054 | 0.0025 | 0.0014 |
12 | −0.0004 | −0.0001 | −0.0004 | −0.0001 | 0.0003 | 0.3542 | 0.0001 | −0.0001 | 0.0002 | 0 |
13 | 0.0013 | 0.002 | 0.0032 | 0.0053 | 0.0137 | 0.1305 | 0.1309 | 0.0147 | 0.004 | 0.003 |
14 | −0.0004 | 0.0001 | 0.0003 | 0.0004 | 0.0008 | 0.0002 | 0.3544 | −0.0002 | 0.0005 | −0.0002 |
15 | 0.0011 | 0.0016 | 0.002 | 0.0025 | 0.0059 | 0.014 | 0.1304 | 0.1297 | 0.0141 | 0.0055 |
16 | −0.0006 | 0.0001 | −0.0004 | 0 | 0.0002 | −0.0001 | −0.0001 | 0.354 | 0.0002 | 0.0002 |
17 | 0.0011 | 0.0009 | 0.0009 | 0.0021 | 0.0025 | 0.0049 | 0.0138 | 0.1305 | 0.1304 | 0.0137 |
18 | 0.0003 | −0.0002 | 0 | −0.0001 | −0.0006 | −0.0004 | −0.0002 | −0.0004 | 0.3541 | −0.0001 |
19 | 0.0008 | 0.0005 | 0.0011 | 0.0015 | 0.0019 | 0.0026 | 0.0046 | 0.0138 | 0.1306 | 0.1302 |
20 | −0.0001 | 0.0005 | 0.0001 | 0.0002 | 0.0008 | 0.0001 | 0.0007 | −0.0003 | −0.0005 | 0.3541 |
−0.25 | −0.25 | 0.0074 | −0.0001 | −0.0073 | −0.0099 | 0.0345 | 0.1609 | 0.0087 | 0.0084 | 0.0098 | 0.0107 |
−0.1 | 0.0050 | 0.0002 | −0.0083 | −0.0107 | 0.0345 | 0.1625 | 0.0080 | 0.0084 | 0.0087 | 0.0092 | |
0 | 0.0042 | −0.0031 | −0.0098 | −0.0124 | 0.0337 | 0.1641 | 0.0065 | 0.0065 | 0.0076 | 0.0086 | |
0.1 | 0.0097 | 0.0036 | −0.0049 | −0.0073 | 0.0380 | 0.1664 | 0.0126 | 0.0120 | 0.0128 | 0.0140 | |
0.25 | 0.0151 | 0.0110 | 0.0006 | −0.002 | 0.0436 | 0.1717 | 0.0165 | 0.0179 | 0.0201 | 0.0216 | |
−0.1 | −0.25 | 0.0002 | −0.0029 | −0.0211 | −0.0280 | −0.008 | 0.0570 | 0.0008 | 0.0016 | 0.0006 | 0.0002 |
−0.1 | 0.0015 | −0.0028 | −0.0212 | −0.0286 | −0.0085 | 0.0578 | −0.0001 | 0.0005 | 0.0001 | −0.0001 | |
0 | 0.0039 | 0.0017 | −0.0184 | −0.0251 | −0.0053 | 0.0601 | 0.0038 | 0.0052 | 0.0060 | 0.0057 | |
0.1 | 0.0014 | 0.0007 | −0.0197 | −0.0263 | −0.0056 | 0.0612 | 0.0024 | 0.0028 | 0.0039 | 0.0037 | |
0.25 | 0.0055 | 0.0059 | −0.0148 | −0.0215 | −0.0003 | 0.0666 | 0.0086 | 0.0099 | 0.0093 | 0.0101 | |
0 | −0.25 | −0.0043 | −0.0035 | −0.0282 | −0.0376 | −0.0321 | −0.0107 | −0.0038 | −0.0039 | −0.0048 | −0.0049 |
−0.1 | −0.0011 | 0.0006 | −0.0258 | −0.0353 | −0.0299 | −0.0096 | −0.0004 | −0.0007 | −0.0004 | −0.0010 | |
0 | −0.0011 | −0.0001 | −0.0265 | −0.0361 | −0.0305 | −0.0087 | −0.0016 | −0.0004 | −0.0006 | −0.0006 | |
0.1 | −0.0001 | 0.0009 | −0.0235 | −0.0333 | −0.0278 | −0.0063 | 0.0016 | 0.0025 | 0.0019 | 0.0025 | |
0.25 | 0.0040 | 0.0064 | −0.0214 | −0.0309 | −0.0250 | −0.0022 | 0.0033 | 0.0060 | 0.0053 | 0.0073 | |
0.1 | −0.25 | 0.0009 | 0.0057 | −0.0274 | −0.039 | −0.0475 | −0.0762 | 0.0009 | −0.0003 | 0.0008 | −0.0001 |
−0.1 | 0.0016 | 0.0056 | −0.0277 | −0.0396 | −0.0478 | −0.0754 | −0.0003 | 0.0002 | −0.0007 | −0.0006 | |
0 | −0.0005 | 0.0043 | −0.0277 | −0.0396 | −0.0479 | −0.0745 | −0.0012 | −0.0012 | −0.0012 | −0.0010 | |
0.1 | 0.0029 | 0.0059 | −0.0250 | −0.0374 | −0.0458 | −0.0727 | 0.0020 | 0.0028 | 0.0038 | 0.0034 | |
0.25 | 0.0097 | 0.0149 | −0.0186 | −0.0305 | −0.0392 | −0.0685 | 0.0088 | 0.0096 | 0.0114 | 0.0115 | |
0.25 | −0.25 | 0.0006 | 0.0102 | −0.0314 | −0.0451 | −0.0690 | −0.1748 | 0.0021 | 0.0018 | 0.0009 | 0.0006 |
−0.1 | 0.0016 | 0.0112 | −0.0314 | −0.0453 | −0.0689 | −0.1744 | 0.0006 | 0.0011 | 0.0014 | 0.0010 | |
0 | 0.0044 | 0.0140 | −0.0281 | −0.0420 | −0.0656 | −0.1730 | 0.0032 | 0.0037 | 0.0040 | 0.0039 | |
0.1 | 0.0049 | 0.0162 | −0.0269 | −0.0408 | −0.0649 | −0.1718 | 0.0049 | 0.0065 | 0.0061 | 0.0060 | |
0.25 | 0.0079 | 0.0229 | −0.0228 | −0.0364 | −0.0600 | −0.1682 | 0.0105 | 0.0120 | 0.0130 | 0.0137 |
−0.25 | −0.25 | 0.0330 | 0.0328 | 0.0201 | 0.018 | 0.0106 | 0.0011 | 0.0287 | 0.0259 | 0.0254 | 0.0238 |
−0.1 | 0.0334 | 0.0339 | 0.0207 | 0.0185 | 0.0110 | 0.0012 | 0.0297 | 0.0266 | 0.0261 | 0.0245 | |
0 | 0.0342 | 0.0337 | 0.0209 | 0.0185 | 0.0108 | 0.0011 | 0.0296 | 0.0267 | 0.0262 | 0.0248 | |
0.1 | 0.0327 | 0.0330 | 0.0202 | 0.0180 | 0.0107 | 0.0011 | 0.0287 | 0.0262 | 0.0257 | 0.0240 | |
0.25 | 0.0323 | 0.0325 | 0.0199 | 0.0178 | 0.0106 | 0.0011 | 0.0287 | 0.0260 | 0.0258 | 0.0242 | |
−0.1 | −0.25 | 0.0333 | 0.0327 | 0.0211 | 0.0187 | 0.0114 | 0.0011 | 0.0295 | 0.0268 | 0.0264 | 0.0250 |
−0.1 | 0.0332 | 0.0317 | 0.0209 | 0.0186 | 0.0114 | 0.0011 | 0.0291 | 0.0264 | 0.0260 | 0.0250 | |
0 | 0.0334 | 0.0330 | 0.0212 | 0.0189 | 0.0115 | 0.0012 | 0.0298 | 0.0271 | 0.0267 | 0.0251 | |
0.1 | 0.0330 | 0.0315 | 0.0208 | 0.0185 | 0.0112 | 0.0011 | 0.0289 | 0.0262 | 0.0258 | 0.0246 | |
0.25 | 0.0328 | 0.0320 | 0.0209 | 0.0185 | 0.0112 | 0.0011 | 0.0291 | 0.0266 | 0.0263 | 0.0248 | |
0 | −0.25 | 0.0333 | 0.0322 | 0.0212 | 0.0191 | 0.0120 | 0.0012 | 0.0296 | 0.0268 | 0.0263 | 0.0250 |
−0.1 | 0.0328 | 0.0320 | 0.0212 | 0.0191 | 0.0120 | 0.0012 | 0.0293 | 0.0268 | 0.0261 | 0.0252 | |
0 | 0.0335 | 0.0319 | 0.0214 | 0.0192 | 0.0119 | 0.0012 | 0.0297 | 0.0271 | 0.0266 | 0.0254 | |
0.1 | 0.0338 | 0.0323 | 0.0217 | 0.0195 | 0.0122 | 0.0012 | 0.0299 | 0.0271 | 0.0270 | 0.0260 | |
0.25 | 0.0332 | 0.0324 | 0.0213 | 0.0192 | 0.0120 | 0.0012 | 0.0300 | 0.0273 | 0.0269 | 0.0255 | |
0.1 | −0.25 | 0.0332 | 0.0327 | 0.0218 | 0.0198 | 0.0130 | 0.0012 | 0.0299 | 0.0274 | 0.0271 | 0.0260 |
−0.1 | 0.0327 | 0.0321 | 0.0218 | 0.0199 | 0.0130 | 0.0012 | 0.0294 | 0.0269 | 0.0262 | 0.0252 | |
0 | 0.0328 | 0.0317 | 0.0214 | 0.0194 | 0.0127 | 0.0012 | 0.0293 | 0.0264 | 0.0263 | 0.0250 | |
0.1 | 0.0331 | 0.0321 | 0.0215 | 0.0195 | 0.0129 | 0.0012 | 0.0295 | 0.0269 | 0.0267 | 0.0256 | |
0.25 | 0.0326 | 0.0321 | 0.0217 | 0.0197 | 0.0130 | 0.0012 | 0.0293 | 0.0268 | 0.0263 | 0.0254 | |
0.25 | −0.25 | 0.0333 | 0.0315 | 0.0220 | 0.0202 | 0.0145 | 0.0013 | 0.0300 | 0.0271 | 0.0271 | 0.0260 |
−0.1 | 0.0327 | 0.0323 | 0.0222 | 0.0205 | 0.0148 | 0.0013 | 0.0302 | 0.0278 | 0.0275 | 0.0265 | |
0 | 0.0328 | 0.0312 | 0.0219 | 0.0202 | 0.0146 | 0.0012 | 0.0297 | 0.0268 | 0.0264 | 0.0255 | |
0.1 | 0.0333 | 0.0325 | 0.0226 | 0.0207 | 0.0147 | 0.0013 | 0.0301 | 0.0274 | 0.0274 | 0.0262 | |
0.25 | 0.0339 | 0.0319 | 0.0226 | 0.0208 | 0.0150 | 0.0012 | 0.0302 | 0.0275 | 0.0272 | 0.0261 |
−0.25 | −0.25 | 0.1818 | 0.1811 | 0.1421 | 0.1344 | 0.1084 | 0.1643 | 0.1697 | 0.1612 | 0.1595 | 0.1545 |
−0.1 | 0.1827 | 0.1840 | 0.1442 | 0.1365 | 0.1104 | 0.1661 | 0.1724 | 0.1634 | 0.1618 | 0.1567 | |
0 | 0.1851 | 0.1837 | 0.1449 | 0.1368 | 0.1092 | 0.1674 | 0.1721 | 0.1635 | 0.1621 | 0.1578 | |
0.1 | 0.1812 | 0.1816 | 0.1423 | 0.1343 | 0.1103 | 0.1698 | 0.1700 | 0.1623 | 0.1607 | 0.1555 | |
0.25 | 0.1803 | 0.1807 | 0.1412 | 0.1335 | 0.1119 | 0.1751 | 0.1701 | 0.1621 | 0.1619 | 0.1571 | |
−0.1 | −0.25 | 0.1825 | 0.1808 | 0.1466 | 0.1396 | 0.1070 | 0.0663 | 0.1717 | 0.1636 | 0.1624 | 0.1581 |
−0.1 | 0.1823 | 0.1782 | 0.1460 | 0.1394 | 0.1072 | 0.0669 | 0.1705 | 0.1625 | 0.1611 | 0.1580 | |
0 | 0.1829 | 0.1816 | 0.1467 | 0.1398 | 0.1072 | 0.0691 | 0.1727 | 0.1647 | 0.1636 | 0.1585 | |
0.1 | 0.1817 | 0.1775 | 0.1454 | 0.1386 | 0.1061 | 0.0698 | 0.1699 | 0.1618 | 0.1607 | 0.1569 | |
0.25 | 0.1811 | 0.1789 | 0.1451 | 0.1378 | 0.1059 | 0.0745 | 0.1707 | 0.1634 | 0.1625 | 0.1578 | |
0 | −0.25 | 0.1826 | 0.1796 | 0.1481 | 0.1431 | 0.1142 | 0.0360 | 0.1721 | 0.1639 | 0.1624 | 0.1583 |
−0.1 | 0.1812 | 0.1790 | 0.1479 | 0.1426 | 0.1137 | 0.0359 | 0.1713 | 0.1638 | 0.1615 | 0.1588 | |
0 | 0.1831 | 0.1785 | 0.1486 | 0.1433 | 0.1132 | 0.0351 | 0.1723 | 0.1646 | 0.1630 | 0.1593 | |
0.1 | 0.1837 | 0.1796 | 0.1491 | 0.1435 | 0.1139 | 0.0351 | 0.1729 | 0.1647 | 0.1645 | 0.1611 | |
0.25 | 0.1824 | 0.1801 | 0.1475 | 0.1418 | 0.1123 | 0.0345 | 0.1731 | 0.1653 | 0.1640 | 0.1599 | |
0.1 | −0.25 | 0.1822 | 0.1810 | 0.1502 | 0.146 | 0.1237 | 0.0837 | 0.1728 | 0.1657 | 0.1646 | 0.1612 |
−0.1 | 0.181 | 0.1793 | 0.1502 | 0.1464 | 0.1237 | 0.0831 | 0.1715 | 0.1639 | 0.1617 | 0.1588 | |
0 | 0.181 | 0.1781 | 0.1490 | 0.1448 | 0.1226 | 0.0820 | 0.1711 | 0.1624 | 0.1622 | 0.1582 | |
0.1 | 0.1819 | 0.1792 | 0.1489 | 0.1446 | 0.1223 | 0.0805 | 0.1717 | 0.1641 | 0.1633 | 0.1599 | |
0.25 | 0.1808 | 0.1799 | 0.1485 | 0.1437 | 0.1206 | 0.0768 | 0.1713 | 0.1640 | 0.1626 | 0.1596 | |
0.25 | −0.25 | 0.1824 | 0.1778 | 0.1517 | 0.1493 | 0.1390 | 0.1784 | 0.1733 | 0.1648 | 0.1647 | 0.1612 |
−0.1 | 0.1809 | 0.1800 | 0.1522 | 0.1502 | 0.1398 | 0.1780 | 0.1738 | 0.1666 | 0.1657 | 0.1629 | |
0 | 0.1810 | 0.1772 | 0.1505 | 0.1483 | 0.1375 | 0.1765 | 0.1723 | 0.1636 | 0.1626 | 0.1598 | |
0.1 | 0.1824 | 0.1809 | 0.1526 | 0.1495 | 0.1377 | 0.1754 | 0.1737 | 0.1657 | 0.1657 | 0.1621 | |
0.25 | 0.1842 | 0.1799 | 0.1522 | 0.1487 | 0.1363 | 0.1718 | 0.1740 | 0.1663 | 0.1654 | 0.1623 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reschenhofer, E.; Mangat, M.K. Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data. Econometrics 2020, 8, 40. https://doi.org/10.3390/econometrics8040040
Reschenhofer E, Mangat MK. Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data. Econometrics. 2020; 8(4):40. https://doi.org/10.3390/econometrics8040040
Chicago/Turabian StyleReschenhofer, Erhard, and Manveer K. Mangat. 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data" Econometrics 8, no. 4: 40. https://doi.org/10.3390/econometrics8040040
APA StyleReschenhofer, E., & Mangat, M. K. (2020). Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data. Econometrics, 8(4), 40. https://doi.org/10.3390/econometrics8040040