A Review of Smart Crop Technologies for Resource Constrained Environments: Leveraging Multimodal Data Fusion, Edge-to-Cloud Computing, and IoT Virtualization
Abstract
1. Introduction
- RQ1: What are the fundamental components of smart crop systems and how are they applied to monitor soil health, crops, and environmental conditions across diverse farming operations?
- RQ2: What are the available data fusion approaches for effectively integrating multi-modal data to create a cohesive and comprehensive understanding of the agricultural environment?
- RQ3: How can IoT virtualization be leveraged within smart crop systems to facilitate real-time monitoring and seamless integration of multimodal data for timely and informed decision-making in low-resource environments with intermittent internet connectivity?
- RQ4: How can the resource constraints in low-resource environments (e.g., African countries) be managed to ensure the reliable operation and data flow of adaptive smart crop systems?
- This study presents a systematic literature review that examines smart crop technologies specifically within the context of resource-constrained African agriculture.
- This review identifies and quantifies key trends in technology adoption for advancing smart crop systems, highlighting a major shift towards integrated solutions. It then provides an in-depth analysis of these emerging integrated frameworks, exploring the pivotal roles of multimodal sensing, edge-to-cloud computing, IoT virtualization, and machine learning in enabling the development of adaptive sensor networks.
- This study analyzes and categorizes the available data fusion approaches (data-level, feature-level, and decision-level) for effectively integrating multimodal agricultural data (soil, crop, weather), crucial for creating a cohesive and comprehensive understanding of complex farm environments.
- The paper provides a detailed analysis of strategies for managing resource constraints, particularly concerning power supply and internet connectivity, in low-resource agricultural settings.
- This review provides insightful recommendations for future research and development. These recommendations are specifically designed to guide the creation and deployment of more efficient, sustainable, and resilient smart crop technologies that are practical and impactful for farmers in resource-constrained regions.
2. Methods
Literature Search and Inclusion Criteria
3. Research Questions
3.1. What Are the Fundamental Components of Smart Crop Systems and How They Are Used to Monitor Soil Health, Crops, and Environmental Conditions Across Diverse Farming Operations?
3.1.1. Smart Crop System Components
- Data Acquisition (Sensing)
- Crop Sensors
- b.
- Soil Sensors
- c.
- Environmental Sensors
- 2.
- IoT Gateway or Edge/Fog Computing Layer
- a.
- Cloud Server Layer
3.1.2. Smart Crop Applications
- Precision Irrigation Systems
- 2.
- Crop and Soil Monitoring Systems
- 3.
- Pest and Disease Management Systems
- 4.
- Crop Yield Estimation Systems
3.2. What Are the Available Data Fusion Approaches for Effectively Integrating Multimodal Data to Create a Cohesive and Comprehensive Understanding of the Agricultural Environment?
3.2.1. Data-Level Fusion
3.2.2. Feature-Level Fusion
3.2.3. Decision-Level Fusion
3.2.4. Tiny Machine Learning (TinyML) Algorithms for Edge AI
3.3. How Can IoT Virtualization Be Leveraged Within Smart Crop Systems to Facilitate Real-Time Monitoring and Seamless Integration of Multimodal Data for Timely and Informed Decision-Making in Low-Resource Environments with Intermittent Internet Connectivity?
3.4. How Can the Resource Constraints in Low-Resource Environments Be Managed to Ensure the Reliable Operation and Data Flow of Adaptive Smart Crop Systems?
3.4.1. Power Resource Management
3.4.2. Internet Connectivity Management
4. Trends in Technology Adoption in Smart Crop Systems
5. Challenges in Existing Research on Smart Crop Systems
5.1. Challenges Associated with Smart Crop Systems
5.2. Challenges Associated with Data Fusion
5.3. Challenges Associated with Smart Crop System Virtualization
5.4. Challenges Associated with Resource Management
6. Recommendation and Future Direction
6.1. Enhanced Multi-Source Data Integration for Smart Crop Applications
6.1.1. Precision Irrigation Optimization
6.1.2. Sustainable Fertilization Management
6.1.3. Advanced Pest and Disease Prediction
6.1.4. Accurate Crop Yield Estimation
6.2. Leveraging Advanced Data Fusion Level
6.3. Resource Management Solutions
6.3.1. Sustainable Power Resource Management
- Advanced Energy Harvesting Systems: Research should emphasize the development of more efficient and cost-effective solar power systems tailored for agricultural IoT nodes, including optimized panel sizing, maximum power point tracking (MPPT) algorithms for varying light conditions, and robust battery management systems suitable for extreme temperatures. Exploration of hybrid energy harvesting approaches (e.g., combining solar with micro-wind or thermal gradients) for enhanced reliability in diverse climatic conditions is also crucial.
- Ultra-Low Power Hardware and Software Design: Further advancements are needed in designing ultra-low-power microcontrollers (ULP-MCUs) and specialized System-on-Chips (SoCs) that minimize power consumption during active states and enable aggressive deep sleep modes. Complementary research into optimized embedded software architectures that facilitate efficient task scheduling, data aggregation at the node level, and intelligent sensor duty cycling will significantly extend battery life and reduce maintenance requirements.
- Low Power Communication Protocols: While existing low-power wide-area network (LPWAN) protocols like LoRaWAN and NB-IoT are promising, future work should explore their further optimization for agricultural data patterns and the development of adaptive medium access control (MAC) protocols that dynamically adjust transmission parameters (e.g., data rate, transmit power, sleep cycles) based on real-time power availability and network conditions, thereby maximizing energy efficiency.
6.3.2. Resilient Internet Connectivity Management
- Optimized Edge-to-Cloud Architectures for Intermittent Connectivity: Building upon the principles of edge computing, future work must develop intelligent edge nodes capable of extensive local data preprocessing, filtering, and aggregation. These nodes should incorporate robust data buffering mechanisms with sophisticated store-and-forward capabilities, ensuring data integrity and eventual transmission even during prolonged network outages. Research into adaptive data synchronization algorithms that prioritize critical data and optimize transmission schedules based on available bandwidth is also essential.
- Hybrid and Adaptive Communication Strategies: Investigating seamless integration and dynamic switching between multiple communication technologies (e.g., LoRaWAN for long-range sensor data, Wi-Fi for local gateway-to-edge communication, and satellite IoT for remote backhaul when terrestrial options are unavailable) is vital. Research should focus on self-organizing mesh networks among sensor nodes to improve local connectivity and data routing in challenging terrains, reducing reliance on single points of failure.
6.4. Network Security and Data Privacy
6.4.1. End-to-End Network Security
6.4.2. Specific Access Control, Data Segregation, and Privacy-Preserving Data
6.4.3. Edge Computing for Enhanced Data Security and Privacy
- Local Data Anonymization and Aggregation: Implement privacy-preserving techniques directly at the edge, allowing sensitive raw data to be anonymized or aggregated into less identifiable forms before being transmitted to the cloud. This minimizes the exposure of individual farm or sensor-level details while still providing valuable insights for broader analysis.
- Decentralized Access Control Enforcement: Edge nodes can act as local policy enforcement points, verifying access credentials and permissions before data leaves the farm perimeter. This creates a more distributed security architecture, reducing reliance on a single, centralized control point.
- Secure Device Management and Firmware Updates: Edge gateways can serve as secure conduits for managing and pushing authenticated firmware updates to sensor nodes, mitigating the risk of malicious code injection. They can also perform local integrity checks on connected devices.
- Reduced Attack Surface for Raw Data: By performing initial processing and filtering at the edge, the volume of raw, potentially sensitive data exposed to the wider internet is significantly reduced, thereby shrinking the attack surface for data in transit to the cloud.
- Offline Security Resilience: Edge nodes can maintain basic security operations and data buffering even during intermittent connectivity, providing a layer of security resilience when cloud-based security services are temporarily unavailable.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pandey, D.K.; Mishra, R. Towards sustainable agriculture: Harnessing AI for global food security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- ElBeheiry, N.; Balog, R.S. Technologies driving the shift to smart farming: A review. IEEE Sens. J. 2022, 23, 1752–1769. [Google Scholar] [CrossRef]
- Abdelmoamen, A.A.; Al Omari, S.; Awal, R.; Fares, A.; Chouikha, M.A. Distributed system for supporting smart irrigation using Internet of Things technology. Eng. Rep. 2021, 7, e12352. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Abd Rahman, M.K.I.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Vahidi, M.; Shafian, S.; Frame, W.H. Multi-Modal sensing for soil moisture mapping: Integrating drone-based ground penetrating radar and RGB-thermal imaging with deep learning. Comput. Electron. Agric. 2025, 236, 110423. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.V.; Ke dam, N.; Patel, A.; Kate, T.R.; Rathnayake, U. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agric. Technol. 2024, 8, 100487. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA statement. J. Clin. Epidemiol. 2020, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Koteish, K.; Harb, H.; Dbouk, M.; Zaki, C.; Abou Jaoude, C. AGRO: A smart sensing and decision-making mechanism for real-time agriculture monitoring. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7059–7069. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Rupanetti, D.; Kaabouch, N. Combining edge computing-assisted internet of things security with artificial intelligence: Applications, challenges, and opportunities. Appl. Sci. 2024, 14, 7104. [Google Scholar] [CrossRef]
- Mrabet, H.; Belguith, S.; Alhomoud, A.; Jemai, A. A survey of IoT security based on a layered architecture of sensing and data analysis. Sensors 2020, 20, 3625. [Google Scholar] [CrossRef] [PubMed]
- Swamy, S.N.; Kota, S.R. An empirical study on system level aspects of Internet of Things (IoT). IEEE Access 2020, 8, 188082–188134. [Google Scholar] [CrossRef]
- Kumar, R.; Agrawal, N. Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog–Cloud based architectural frameworks: A survey on current state and research challenges. J. Ind. Inf. Integr. 2023, 35, 100504. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Qubaa, A.R.; Aljawwadi, T.A.; Hamdoon, A.N.; Mohammed, R.M. Using uavs/drones and vegetation indices in the visible spectrum to monitoring agricultural lands. Iraqi J. Agric. Sci. 2021, 52, 601–610. [Google Scholar] [CrossRef]
- Panda, S.S.; Rao, M.N.; Thenkabail, P.S.; Misra, D.; Fitzgerald, J.P. Remote sensing systems—Platforms and sensors: Aerial, satellite, UAV, optical, radar, and LiDAR. In Remote Sensing Handbook; CRC Press: Boca Raton, FL, USA, 2016; Volume 1, pp. 3–86. [Google Scholar]
- Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron. J. 2021, 113, 971–992. [Google Scholar] [CrossRef]
- Rayhana, R.; Ma, Z.; Liu, Z.; Xiao, G.; Ruan, Y.; Sangha, J.S. A review on plant disease detection using hyperspectral imaging. IEEE Trans. AgriFood Electron. 2023, 1, 108–134. [Google Scholar] [CrossRef]
- Ali, F.; Razzaq, A.; Tariq, W.; Hameed, A.; Rehman, A.; Razzaq, K.; Sarfraz, S.; Rajput, N.A.; Zaki, H.E.; Shahid, M.S.; et al. Spectral Intelligence: AI-Driven Hyperspectral Imaging for Agricultural and Ecosystem Applications. Agronomy 2024, 14, 2260. [Google Scholar] [CrossRef]
- Wang, Y.; An, J.; Shao, M.; Wu, J.; Zhou, D.; Yao, X.; Zhang, X.; Cao, W.; Jiang, C.; Zhu, Y. A comprehensive review of proximal spectral sensing devices and diagnostic equipment for field crop growth monitoring. Precis. Agric. 2025, 26, 54. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, R.; Wang, M.; Zhang, J.; Yu, F.; Ping, Y.; Qiu, L. Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. Plants 2024, 13, 3088. [Google Scholar] [CrossRef]
- Zandi, A.; Hosseinirad, S.; Kashani, Z.H.; Tavakolian, K.; Cho, B.K.; Vasefi, F.; Kim, M.S.; Tavakolian, P. A systematic review of multi-mode analytics for enhanced plant stress evaluation. Front. Plant Sci. 2025, 16, 1545025. [Google Scholar] [CrossRef]
- Patle, K.S.; Saini, R.; Kumar, A.; Surya, S.G.; Palaparthy, V.S.; Salama, K.N. IoT enabled, leaf wetness sensor on the flexible substrates for in-situ plant disease management. IEEE Sens. J. 2021, 21, 19481–19491. [Google Scholar] [CrossRef]
- Rowlandson, T.; Gleason, M.; Sentelhas, P.; Gillespie, T.; Thomas, C.; Hornbuckle, B. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 2015, 99, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Negi, P.; Anand, S. Plant disease detection, diagnosis, and management: Recent advances and future perspectives. Artif. Intell. Smart Agric. Technol. Appl. 2024, 30, 413–436. [Google Scholar]
- Garg, P.; Khaparde, P.; Patle, K.S.; Bhaliya, C.; Kumar, A.; Joshi, M.V.; Palaparthy, V.S. Environmental and soil parameters for germination of leaf spot disease in the groundnut plant using IoT-enabled sensor system. IEEE Sens. Lett. 2023, 7, 4504104. [Google Scholar] [CrossRef]
- Bassimba, D.D.; Intrigliolo, D.S.; Dalla Marta, A.; Orlandini, S.; Vicent, A. Leaf wetness duration in irrigated citrus orchards in the Mediterranean climate conditions. Agric. For. Meteorol. 2017, 234, 182–195. [Google Scholar] [CrossRef]
- Paturkar, A.; Sen, G.G.; Bailey, D. Plant trait measurement in 3D for growth monitoring. Plant Methods 2022, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Bitella, G.; Bochicchio, R.; Castronuovo, D.; Lovelli, S.; Mercurio, G.; Rivelli, A.R.; Rosati, L.; D’Antonio, P.; Casiero, P.; Laghetti, G.; et al. Monitoring plant height and spatial distribution of biometrics with a low-cost proximal platform. Plants 2024, 13, 1085. [Google Scholar] [CrossRef]
- Haworth, M.; Marino, G.; Atzori, G.; Fabbri, A.; Daccache, A.; Killi, D.; Carli, A.; Montesano, V.; Conte, A.; Balestrini, R.; et al. Plant physiological analysis to overcome limitations to plant phenotyping. Plants 2023, 12, 4015. [Google Scholar] [CrossRef]
- Ye, D.; Wu, L.; Li, X.; Atoba, T.O.; Wu, W.; Weng, H. A synthetic review of various dimensions of non-destructive plant stress phenotyping. Plants 2023, 12, 1698. [Google Scholar] [CrossRef]
- Lines, E.R.; Fischer, F.J.; Owen, H.J.F.; Jucker, T. The shape of trees: Reimagining forest ecology in three dimensions with remote sensing. J. Ecol. 2022, 110, 1730–1745. [Google Scholar] [CrossRef]
- Ameer, S.; Ibrahim, H.; Kulsoom, F.N.U.; Ameer, G.; Sher, M. Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: A comprehensive review. J. Soils Sediments 2024, 24, 2565–2583. [Google Scholar] [CrossRef]
- Dattatreya, S.; Khan, A.N.; Jena, K.; Chatterjee, G. Conventional to modern methods of soil NPK sensing: A review. IEEE Sens. J. 2023, 24, 2367–2380. [Google Scholar] [CrossRef]
- Silva, F.M.; Queirós, C.; Pereira, M.; Pinho, T.; Barroso, T.; Magalhães, S.; Boaventura, J.; Santos, F.; Cunha, M.; Martins, R.C. Precision fertilization: A critical review analysis on sensing technologies for nitrogen, phosphorous and potassium quantification. Comput. Electron. Agric. 2024, 224, 109220. [Google Scholar] [CrossRef]
- Musa, P.; Sugeru, H.; Wibowo, E.P. Wireless sensor networks for precision agriculture: A review of NPK sensor implementations. Sensors 2023, 24, 51. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.I.; Khaleque, M.A.; Ali, M.R.; Bacchu, M.S.; Hossain, M.S.; Shahed, S.M.; Khan, M.Z. Development of electrochemical sensors for quick detection of environmental (soil and water) NPK ions. RSC Adv. 2024, 14, 9137–9158. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Halder, N.; Singh, B.; Singh, J.; Sharma, S.; Shacham-Diamand, Y. Smart farming revolution: Portable and real-time soil nitrogen and phosphorus monitoring for sustainable agriculture. Sensors 2023, 23, 5914. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Wu, M.; Jiang, C.; Chen, X.; Cai, Z.; Wang, B.; Zhang, J.; Zhang, T.; Li, Z. Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China. J. Soils Sediments 2018, 18, 1853–1864. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Xia, Y.; Feng, J.; Zhang, H.; Xiong, D.; Kong, L.; Seviour, R.; Kong, Y. Effects of soil pH on the growth, soil nutrient composition, and rhizosphere microbiome of Ageratina adenophora. PeerJ 2024, 12, e17231. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.N.; Anuar, M.I.; Abd Aziz, N.; Murdi, A.A. Function and application of Soil Electrical Conductivity (EC) sensor in agriculture: A review. Adv. Agric. Food Res. J. 2025, 6, 1–22. [Google Scholar]
- Kaur, S.; Singh, S.; Sinha, M.M. Investigating the effect of soil texture on dielectric properties of soil by using square patch sensor. Sens. Imaging 2025, 26, 12. [Google Scholar] [CrossRef]
- Banón, S.; Álvarez Martín, S.; Bañón, D.; Ortuño Gallud, M.F.; Sánchez-Blanco, M.J. Assessment of soil salinity indexes using electrical conductivity sensors. Sci. Hortic. 2021, 285, 110171. [Google Scholar] [CrossRef]
- Sahana, M.; Rehman, S.; Patel, P.P.; Dou, J.; Hong, H.; Sajjad, H. Assessing the degree of soil salinity in the Indian Sundarban Biosphere Reserve using measured soil electrical conductivity and remote sensing data–derived salinity indices. Arab. J. Geosci. 2020, 13, 1289. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K.; Schott, J.; Leverett, K. Prediction of soil water content and electrical conductivity using random forest methods with UAV multispectral and ground-coupled geophysical data. Remote Sens. 2022, 14, 1023. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Hachimi, C.E.; Belaqziz, S.; Khabba, S.; Sebbar, B.; Dhiba, D.; Chehbouni, A. Smart weather data management based on artificial intelligence and big data analytics for precision agriculture. Agriculture 2023, 13, 95. [Google Scholar] [CrossRef]
- Miller, T.; Durlik, I.; Kostecka, E.; Kozlovska, P.; Łobodzińska, A.; Sokołowska, S.; Nowy, A. Integrating artificial intelligence agents with the internet of things for enhanced environmental monitoring: Applications in water quality and climate data. Electronics 2025, 14, 696. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart sensors and smart data for precision agriculture: A review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Gaznayee, H.A.A.; Zaki, S.H.; Al-Quraishi, A.M.F.; Aliehsan, P.H.; Hakzi, K.K.; Razvanchy, H.A.S.; Mahdi, K. Integrating remote sensing techniques and meteorological data to assess the ideal irrigation system performance scenarios for improving crop productivity. Water 2023, 15, 1605. [Google Scholar] [CrossRef]
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote sensing of soil degradation: Progress and perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454. [Google Scholar] [CrossRef]
- Torres-Quezada, E.; Fuentes-Peñailillo, F.; Gutter, K.; Rondón, F.; Marmolejos, J.M.; Maurer, W.; Bisono, A. Remote sensing and soil moisture sensors for irrigation management in avocado orchards: A practical approach for water stress assessment in remote agricultural areas. Remote Sens. 2025, 17, 708. [Google Scholar] [CrossRef]
- Francia, M.; Giovanelli, J.; Golfarelli, M. Multi-sensor profiling for precision soil-moisture monitoring. Comput. Electron. Agric. 2022, 197, 106924. [Google Scholar] [CrossRef]
- Bhatti, S.; Heeren, D.M.; O’Shaughnessy, S.A.; Neale, C.M.; LaRue, J.; Melvin, S.; Bai, G. Toward automated irrigation management with integrated crop water stress index and spatial soil water balance. Precis. Agric. 2023, 24, 2223–2247. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Sultan, M. Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Arafa, Y.; El-Gindy, A.G.M.; El-Shirbeny, M.; Bourouah, M.; Abd-ElGawad, A.M.; Rashad, Y.M.; Youssef, M.A. Improving the spatial deployment of the soil moisture sensors in smart irrigation systems using GIS. Cogent Food Agric. 2024, 10, 261124. [Google Scholar] [CrossRef]
- Aarif KO, M.; Alam, A.; Hotak, Y. Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. J. Sens. 2025, 2025, 2460098. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 12. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S. Soil temperature and plant growth. In Soil Physical Environment and Plant Growth: Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2023; Volume 29, pp. 175–204. [Google Scholar]
- Ni, J.; Cheng, Y.; Wang, Q.; Ng, C.W.W.; Garg, A. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. J. Hydrol. 2019, 571, 494–502. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Chtouki, M.; Laaziz, F.; Naciri, R.; Garré, S.; Nguyen, F.; Oukarroum, A. Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Sci. Rep. 2022, 12, 6671. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Suyker, A.E. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production. J. Plant Physiol. 2015, 177, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Kutschera, A.; Lamb, J.J. Light meter for measuring photosynthetically active radiation. Am. J. Plant Sci. 2018, 9, 2420–2429. [Google Scholar] [CrossRef]
- Jamil, U.; Rahman, M.M.; Pearce, J.M. Photosynthetically active radiation complexities in agrivoltaic policy mandates: Insights from controlled environment yields under semitransparent photovoltaics. J. Clean. Prod. 2025, 523, 146392. [Google Scholar] [CrossRef]
- Dong, Y.; Hansen, H. Design of an Internet of Things (IoT)-based photosynthetically active radiation (PAR) monitoring system. AgriEngineering 2024, 6, 773–785. [Google Scholar] [CrossRef]
- Zakurin, A.O.; Shchennikova, A.V.; Kamionskaya, A.M. Artificial-light culture in protected ground plant growing: Photosynthesis, photomorphogenesis, and prospects of LED application. Russ. J. Plant Physiol. 2020, 67, 413–424. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jamil, U.; Pearce, J.M. Open-Source Photosynthetically Active Radiation Sensor for Enhanced Agricultural and Agrivoltaics Monitoring. Electronics 2025, 14, 2225. [Google Scholar] [CrossRef]
- Anand, P.; Mina, U.; Khare, M.; Kumar, P.; Kota, S.H. Air pollution and plant health response—Current status and future directions. Atmos. Pollut. Res. 2022, 13, 101508. [Google Scholar] [CrossRef]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Lee, G.; Wei, Q.; Zhu, Y. Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 2021, 31, 2106475. [Google Scholar] [CrossRef]
- Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Menghini, F. Plants for sustainable improvement of indoor air quality. Trends Plant Sci. 2018, 23, 507–512. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Aldossary, M. Energy-efficient edge–fog–cloud architecture for IoT-based smart agriculture environment. IEEE Access 2021, 9, 110480–110492. [Google Scholar] [CrossRef]
- Malik, A.W.; Rahman, A.U.; Qayyum, T.; Ravana, S.D. Leveraging fog computing for sustainable smart farming using distributed simulation. IEEE Internet Things J. 2020, 7, 3300–3309. [Google Scholar] [CrossRef]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
- Hamdan, S.; Ayyash, M.; Almajali, S. Edge-computing architectures for Internet of Things applications: A survey. Sensors 2020, 20, 6441. [Google Scholar] [CrossRef]
- He, Q.; Zhao, H.; Feng, Y.; Wang, Z.; Ning, Z.; Luo, T. Edge computing-oriented smart agricultural supply chain mechanism with auction and fuzzy neural networks. J. Cloud Comput. 2024, 13, 66. [Google Scholar] [CrossRef]
- Angel, N.A.; Ravindran, D.; Vincent, P.D.R.; Srinivasan, K.; Hu, Y.C. Recent advances in evolving computing paradigms: Cloud, edge, and fog technologies. Sensors 2021, 22, 196. [Google Scholar] [CrossRef]
- Yang, G.; Jan, M.A.; Rehman, A.U.; Babar, M.; Aimal, M.M.; Verma, S. Interoperability and data storage in Internet of Multimedia Things: Investigating current trends, research challenges and future directions. IEEE Acces 2020, 8, 124382–124401. [Google Scholar] [CrossRef]
- Abbasian Dehkordi, S.; Farajzadeh, K.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K.; Abbasian Dehkordi, M. A survey on data aggregation techniques in IoT sensor networks. Wirel. Netw. 2020, 26, 1243–1263. [Google Scholar] [CrossRef]
- Uddin, R.; Koo, I. Real-time remote patient monitoring: A review of biosensors integrated with multi-hop IoT systems via cloud connectivity. Appl. Sci. 2024, 14, 1876. [Google Scholar] [CrossRef]
- Trigka, M.; Dritsas, E. Wireless sensor networks: From fundamentals and applications to innovations and future trends. IEEE Access 2025, 13, 96365–96399. [Google Scholar] [CrossRef]
- Işık, M.F.; Sönmez, Y.; Yılmaz, C.; Özdemir, V.; Yılmaz, E.N. Precision irrigation system (PIS) using sensor network technology integrated with iOS/Android application. Appl. Sci. 2017, 7, 891. [Google Scholar] [CrossRef]
- Rose, T.; Ali, N.; Dong, Y. Design and development of an IoT-based dendrometer system for real-time trunk diameter monitoring of Christmas trees. Smart Agric. Technol. 2025, 10, 100765. [Google Scholar] [CrossRef]
- Ngoma, D.H.; Nkongo, D.; Abdul-Rahman, H.M.; Muna, B.H.; Buberwa, A.P.; Ngaiza, E.; Rhee, H. Design and development of IoT smart drip irrigation and fertigation prototype for small and medium scale farmers: A case study of tomato farmers in Tanzania. J. Inst. Eng. (India) Ser. A 2025, 4, 373–395. [Google Scholar] [CrossRef]
- Mokhtarzadeh, H.; Gorjian, S.; Minaei, S. Design, development, and evaluation of a low-cost smart solar-powered weather station for use in agricultural environments. Results Eng. 2025, 26, 104848. [Google Scholar] [CrossRef]
- Belkher, S.; Latrech, B.; Bekri, W.; Markwordt, F.; Rahim, M.A.; Dupont, C.; Rezig, M. Deficit Irrigation and an IoT-Based System for Improving Yield and Water Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions. Agronomy 2025, 15, 157. [Google Scholar] [CrossRef]
- Vinod Kumar, S.; Singh, C.D.; Rao, K.R.; Rajwade, Y.A.; Kumar, M.; Jawaharlal, D.; Asha, K.R. IoT-based smart drip irrigation scheduling and wireless monitoring of microclimate in sweet corn crop under plastic mulching. Irrig. Sci. 2024, 1–20. [Google Scholar] [CrossRef]
- Shahab, H.; Naeem, M.; Iqbal, M.; Aqeel, M.; Ullah, S.S. IoT-driven smart agricultural technology for real-time soil and crop optimization. Smart Agric. Technol. 2025, 10, 100847. [Google Scholar]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.; Cercas, F. IoT-based systems for soil nutrients assessment in horticulture. Sensors 2022, 23, 403. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, V.; Chandra, R. IoT-based soil health monitoring and recommendation system. In Proceedings of the Internet of Things and Analytics for Agriculture, Singapore, 25 October 2019. [Google Scholar]
- Islam, M.R.; Oliullah, K.; Kabir, M.M.; Alom, M.; Mridha, M.F. Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. J. Agric. Food Res. 2023, 14, 100880. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring citrus soil moisture and nutrients using an IoT-based system. Sensors 2017, 17, 447. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, X.; Wang, Y.; Yu, H.; Mu, C. IoT-based system of prevention and control for crop diseases and insect pests. Front. Plant Sci. 2024, 15, 1323047. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Ahmed, S.; Marwat, S.N.K.; Brahim, G.B.; Khan, W.U.; Khan, S.; Al-Fuqaha, A.; Koziel, S. IoT-based intelligent pest management system for precision agriculture. Sci. Rep. 2024, 14, 31917. [Google Scholar] [CrossRef]
- Kumar, B.V.; Rao, P.G.K. An effective hybrid attention model for crop yield prediction using IoT-based three-phase prediction with an improved sailfish optimizer. Expert Syst. Appl. 2024, 255, 124740. [Google Scholar] [CrossRef]
- Ramzan, S.; Ghadi, Y.Y.; Aljuaid, H.; Mahmood, A.; Ali, B. An ingenious IoT-based crop prediction system using ML and EL. Comput. Mater. Contin. 2024, 79, 183–199. [Google Scholar] [CrossRef]
- Nithya, V.; Josephine, M.S.; Jeyabalaraja, V. IoT-based crop yield prediction system in Indian sub-continent using machine learning techniques. Remote Sens. Earth Syst. Sci. 2023, 6, 156–166. [Google Scholar] [CrossRef]
- Afriyie, E.; Verdoodt, A.; Mouazen, A.M. Data fusion of visible near-infrared and mid-infrared spectroscopy for rapid estimation of soil aggregate stability indices. Comput. Electron. Agric. 2021, 187, 106229. [Google Scholar] [CrossRef]
- Comino, F.; Ayora-Cañada, M.; Aranda, V.; Díaz, A.; Domínguez-Vidal, A. Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination. Talanta 2018, 188, 676–684. [Google Scholar] [CrossRef]
- Li, F.; Xu, L.; You, T.; Lu, A. Measurement of potentially toxic elements in the soil through NIR, MIR, and XRF spectral data fusion. Comput. Electron. Agric. 2021, 187, 106257. [Google Scholar] [CrossRef]
- Torres, A.B.; da Rocha, A.R.; da Silva, T.L.C.; de Souza, J.N.; Gondim, R.S. Multilevel data fusion for the internet of things in smart agriculture. Comput. Electron. Agric. 2020, 171, 105309. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Batchelor, W.D.; Dong, R.; Kusnierek, K. Evaluating model-based strategies for in-season nitrogen management of maize using weather data fusion. Agric. For. Meteorol. 2021, 308, 108564. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, T.; Ma, H.; He, C.; Xu, F.; Malone, R.W.; He, J. Dynamic within-season irrigation scheduling for maize production in Northwest China: A method based on weather data fusion and yield prediction by DSSAT. Agric. For. Meteorol. 2020, 285, 107928. [Google Scholar] [CrossRef]
- Gong, L.; Yan, J.; Chen, Y.; An, J.; He, L.; Zheng, L.; Zou, Z. An IoT-based intelligent irrigation system with data fusion and a self-powered wide-area network. J. Ind. Inf. Integr. 2022, 29, 100367. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, S.; Lin, C.; He, Y.; Xu, J.L. Using multi-sensor data fusion techniques and machine learning algorithms for improving UAV-based yield prediction of oilseed rape. Drones 2024, 8, 642. [Google Scholar] [CrossRef]
- Chae, B.; Heo, S. TinyMo: Graph-Level Memory Optimizer for Tiny Machine Learning. IEEE Embed. Syst. Lett. 2024, 17, 196–199. [Google Scholar] [CrossRef]
- Ooko, S.O.; Ogore, M.M.; Nsenga, J.; Zennaro, M. TinyML in Africa: Opportunities and challenges. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Ramos-Giraldo, P.; Reberg-Horton, S.C.; Mirsky, S.; Lobaton, E.; Locke, A.M.; Henriquez, E.; Zuniga, A.; Minin, A. Low-cost smart camera system for water stress detection in crops. In Proceedings of the IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020. [Google Scholar]
- Sheth, D.; Sudharsan, B.; Breslin, J.G.; Ali, M.I. Embedded ML pipeline for precision agriculture. In Proceedings of the 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Milan, Italy, 4–6 May 2022. [Google Scholar]
- de Vita, F.; Nocera, G.; Bruneo, D.; Tomaselli, V.; Giacalone, D.; Das, S.K. Quantitative analysis of Deep Leaf: A plant disease detector on the smart edge. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020. [Google Scholar]
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Liakos, B.; Canavari, M.; Wiebensohn, J.; Tisserye, B.A. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Finger, R. Digital innovations for sustainable and resilient agricultural systems. Eur. Rev. Agric. Econ. 2023, 50, 1277–1309. [Google Scholar] [CrossRef]
- Chaux, J.D.; Sanchez-Londono, D.; Barbieri, G. A digital twin architecture to optimize productivity within controlled environment agriculture. Appl. Sci. 2021, 11, 8875. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital twin in manufacturing: A categorical literature review and classification. IFAC-Pap. 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Sleiti, A.K.; Kapat, J.S.; Vesely, L. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems. Energy Rep. 2022, 8, 3704–3726. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the digital twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Nigussie, E.; Olwal, T.; Musumba, G.; Tegegne, T.; Lemma, A.; Mekuria, F. IoT-based irrigation management for smallholder farmers in rural sub-Saharan Africa. Procedia Comput. Sci. 2020, 177, 86–93. [Google Scholar] [CrossRef]
- Dai, M.; Shen, Y.; Li, X.; Liu, J.; Zhang, S.; Miao, H. Digital twin system of pest management driven by data and model fusion. Agriculture 2024, 14, 1099. [Google Scholar] [CrossRef]
- Melesse, T.Y. Digital twin-based applications in crop monitoring. Heliyon 2025, 11, e42137. [Google Scholar] [CrossRef]
- Rajeswari, D.; Parthiban, A.V.; Ponnusamy, S. Digital twin-based crop yield prediction in agriculture. In Harnessing AI and Digital Twin Technologies in Businesses; IGI Global: Hershey, PA, USA, 2024; pp. 99–110. [Google Scholar]
- European Parliament. Directorate-General for Parliamentary Research Services. In Precision Agriculture and the Future of Farming in Europe—Scientific Foresight Study; Daheim, C., Poppe, K., Schrijver, R., Eds.; European Parliament; European Union: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Dospinescu, O.; Buraga, S. Integrated ERP Systems—Determinant Factors for Their Adoption in Romanian Organizations. Systems 2025, 13, 667. [Google Scholar] [CrossRef]
- Dospinescu, O.; Dospinescu, N. The use of information technology toward the ethics of food safety. Ecoforum J. 2018, 7, 70–82. [Google Scholar]
- Chourlias, A.; Violos, J.; Leivadeas, A. Virtual sensors for smart farming: An IoT-and AI-enabled approach. Internet Things 2025, 32, 101611. [Google Scholar] [CrossRef]
- Majumdar, P.; Mitra, S.; Bhattacharya, D. IoT for promoting agriculture 4.0: A review from the perspective of weather monitoring, yield prediction, security of WSN protocols, and hardware cost analysis. J. Biosyst. Eng. 2021, 46, 440–461. [Google Scholar] [CrossRef]
- Zisis, T.; Gravalos, I.; Skoubris, E.; Poulek, V.; Petrík, T.; Libra, M. A comparative analysis between battery-and solar-powered wireless sensors for soil water monitoring. Appl. Sci. 2022, 12, 1131. [Google Scholar]
Ref. | Crop Type | Applications | Monitored Parameters | Connectivity | Strengths | Limitations |
---|---|---|---|---|---|---|
[90] | Not provided | Precision irrigation | Soil and weather conditions | WiFi | Multi-parameter data fusion | Crop data not considered |
[91] | Christmas trees | Smart irrigation | Crop (trunk diameter, water stress), weather (air temperature) | 4G LTE | Crop and weather integration | Soil data not considered |
[92] | Tomato | Precision irrigation | Soil (pH, NPK level), weather (air temperature, humidity) | Not specified | Integrated soil and weather data | Limited data |
[93] | Not provided | Precision irrigation | Weather (air temperature, humidity, wind speed) | LoRa | General monitoring | Soil/crop data not considered |
[94] | Wheat | Smart irrigation | Crop water, soil temperature, soil water, NPK | LoRa | Soil/crop integration | Weather data not considered |
[95] | Sweet corn | Precision irrigation | Soil moisture levels | ZigBee, WiFi | Sweet corn-specific monitoring | Lacks crop and weather data |
[96] | Rice | Crop & soil monitoring | Soil (NPK, pH, moisture, salinity) | WiFi | Rice-specific monitoring | Lacks weather and crop data |
[97] | Diverse crops | Crop & soil monitoring | Soil | WiFi/ LoRa | General crop monitoring | Lacks crop and weather data |
[98] | Not provided | Crop & soil monitoring | Soil (humidity, temperature, moisture,) | ZigBee | Crop/soil focus | Lacks weather and crop data |
[99] | Apple, beans, coffee, grapes, banana | Crop & soil monitoring | Soil nutrient levels | LoRa | Multi-crop monitoring | Limited data |
[100] | Citrus | Crop & soil monitoring | Soil & weather | ZigBee | Citrus-specific monitoring | Lacks crop data |
[101] | Not provided | Pest & disease management | Weather | ZigBee | Pest/disease focus | Lacks multimodal data |
[102] | Not provided | Pest & disease management | Soil & weather | ZigBee | Soil/ weather integration | Lacks crop data |
[103] | Guava | Pest & disease management | Crop | Not provided | Crop yield specific | Lacks soil/weather data |
[104] | Cherry, citrus, guava, mango | Crop yield estimation | Crop | Not provided | Multi-crop yield estimation | Limited data |
[105] | Maize, cotton, rice, wheat | Crop yield estimation | Soil (pH, humidity, temperature) | Not provided | Multi-crop yield estimation | Limited data |
[106] | Cotton, banana, coffee | Crop yield estimation | Soil | Not provided | Multi-crop yield estimation | Limited data |
Ref. | Crop Type | Application | Data Fusion Type | Data Fusion Approach | Strength | Limitation |
---|---|---|---|---|---|---|
[105] | Rice, maize, jute, cotton | Crop yield estimation | Data-level fusion | Concatenation | Simplicity, low computation cost | Data redundancy |
[110] | Coconut tree and cashew | Precision Irrigation | Data-, feature-, and decision-level fusion | Kalman filter algorithm, voting | Improved accuracy, flexibility | High computation complexity, integration challenges |
[111] | Maize | Smart Irrigation | Data-level fusion | Concatenation | Lightweight computation | Poor results |
[112] | Maize | Precision irrigation | Data-level fusion | Concatenation | Low computation cost | Data redundancy |
[113] | Not specified | Smart irrigation | Feature-level fusion | LSTM deep fusion | Richer representation, better performance | Near-optimal results |
Ref. | Crop Type | Application | IoT Virtualization |
---|---|---|---|
[129] | Maize, banana, beans | Smart irrigation system | Digital twin |
[130] | Vegetables | Pest management enhancement | Digital twin |
[131] | Not specified | Crop monitoring | Digital twin |
[132] | Not specified | Crop yield estimation | Digital twin |
Ref. | Power Resource Management | Cloud Computing for Data Analysis | Edge Computing for Internet Connectivity Management | Strength | Limitation |
---|---|---|---|---|---|
[96] | Not considered | Yes | No | Scalable and flexible | Internet dependency and system instability |
[97] | Solar energy harvesting | Yes | No | Energy efficient and remote accessibility | Requires stable connectivity |
[100] | Not considered | Yes | No | Remote accessibility | Energy inefficient and requires stable connectivity |
[101] | Solar energy harvesting | Yes | No | Sustainable system and remote accessibility | Internet dependency |
[104] | Not considered | Yes | No | Flexible and cost efficient | Requires stable internet and not energy efficient |
[106] | Not considered | Yes | Yes | Allowing local data processing | Energy efficient |
[138] | Solar energy harvesting | Yes | No | Prolonged operation | Strong internet connection required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatinwo, D.D.; Myburgh, H.C.; De Freitas, A.; Abu-Mahfouz, A.M. A Review of Smart Crop Technologies for Resource Constrained Environments: Leveraging Multimodal Data Fusion, Edge-to-Cloud Computing, and IoT Virtualization. J. Sens. Actuator Netw. 2025, 14, 99. https://doi.org/10.3390/jsan14050099
Olatinwo DD, Myburgh HC, De Freitas A, Abu-Mahfouz AM. A Review of Smart Crop Technologies for Resource Constrained Environments: Leveraging Multimodal Data Fusion, Edge-to-Cloud Computing, and IoT Virtualization. Journal of Sensor and Actuator Networks. 2025; 14(5):99. https://doi.org/10.3390/jsan14050099
Chicago/Turabian StyleOlatinwo, Damilola D., Herman C. Myburgh, Allan De Freitas, and Adnan M. Abu-Mahfouz. 2025. "A Review of Smart Crop Technologies for Resource Constrained Environments: Leveraging Multimodal Data Fusion, Edge-to-Cloud Computing, and IoT Virtualization" Journal of Sensor and Actuator Networks 14, no. 5: 99. https://doi.org/10.3390/jsan14050099
APA StyleOlatinwo, D. D., Myburgh, H. C., De Freitas, A., & Abu-Mahfouz, A. M. (2025). A Review of Smart Crop Technologies for Resource Constrained Environments: Leveraging Multimodal Data Fusion, Edge-to-Cloud Computing, and IoT Virtualization. Journal of Sensor and Actuator Networks, 14(5), 99. https://doi.org/10.3390/jsan14050099