A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions
Abstract
1. Introduction
- Introduction: Introduces underwater wireless communication and RIS to the reader.
- Optical-RIS for UOWCs: Surveys the existing O-RIS state-of-the-art from four perspectives—channel modeling of purely underwater O-RIS-based systems, and systems where RIS is above the water, but may have been used to assist a UOWC; towards enhancing physical layer security; enabling multiuser access, and finally, the works on metasurfaces for underwater applications that could potentially be adopted for O-RIS underwater.
- Acoustic-RIS for UWAC: Surveys the existing A-RIS state-of-the-art from four perspectives—channel modeling of A-RIS-based systems, multiuser access, wideband beamforming, and hardware realizations.
- Research Challenges: Key research challenges are discussed in terms of environmental and system-based challenges. The main environmental challenges relate to the inhomogeneity of the underwater medium and ambient noise, such as sunlight. System-level issues are discussed with a focus on secrecy and security, and multiuser access.
- Research Opportunities: Opportunities for future works are discussed from the point of view of overcoming effects of inhomogeneity for optical and acoustic UWCs; incorporating more complex optical beam generation/conversion using metasurfaces and/or metalenses to achieve UOWCs more robust to occlusion effects; opportunities for incorporating deep-learning for the wideband beamforming of UWAs; multiuser links and resource allocation optimization in A-RIS; practical design and research considerations for realizing RIS hardware suitable for aquatic environments, and considerations towards realizing acoustic-optic hybrid RIS.
- Conclusions: Concludes the article by packaging our main findings and making suggestions for future work.
2. Optical Reconfigurable Intelligent Surfaces (O-RIS) for UOWCs
2.1. Channel Modeling (O-RIS)
2.2. Physical Layer Security Improvement
2.3. RIS-Assisted Multiuser Strategies
2.4. Metasurfaces for Underwater Applications
Reference | Key Contributions |
---|---|
Zhao et al. [41] |
|
Ren et al. [42] |
|
Hu et al. [43] |
|
Wang et al. [46] |
|
Zhang et al. [47] |
|
3. Acoustic Reconfigurable Intelligent Surfaces (A-RIS) for UWACs
3.1. Channel Modeling (A-RIS)
3.2. Multiuser Communication and Protocol
3.3. Wideband Beamforming
3.4. Hardware Designs
4. Research Challenges
4.1. Environmental Challenges
4.1.1. Effect of Varying IOPs in Stratified Oceans
4.1.2. Solar Interference
4.1.3. Light Scintillation Due to Turbulence
4.1.4. Influences of Time-Varying Effects on the UWA Channel
4.2. System Challenges
4.2.1. Secrecy and Security with O-RIS
4.2.2. Multiuser Strategies with O-RIS
5. Research Opportunities
5.1. Towards Overcoming Channel Condition Effects on UOWCs
5.2. O-RIS with Higher-Order Beams for Mobile Applications
5.3. Wideband Beamforming for A-RIS
5.4. Multiuser Communication and Resource Allocation Optimization in A-RIS
5.5. Implications for RIS Hardware Designs in Seawater
5.6. Acoustic-Optical Hybrid RIS
- Fewer RIS hardware are needed if one device can service both acoustic and optical links, moving closer to the idealistic vision for underwater connectivity under the 6G package.
- Congestion in either link type could be reduced by switching to the alternative channel. The RIS devices in between the sender and receiver could thus operate using this optimal mode.
- There could be improvement in security in selectively choosing the transmission mode. For example, where the receiver and transmitter are close by, establishing a UOWC will ensure it is less likely to be overheard by eavesdroppers beyond the link range due to directionality and attenuation.
- In environments unfavorable to UOWCs, such as those with high attenuation or significant obstructions, the links could instead be established as UWACs, to ensure reliability.
- In environments unfavorable for UWACs, such as in spatially narrow channels that induce multipath effects, shifting to UOWCs may achieve better performance.
- Improved energy efficiency overall. For example, given that UOWCs are more energy efficient per data bit overall, compared to UWACs, and given that RIS facilitates targeted, high-SNR links to be established, a long-distance acoustic transmission converted to optical signals and reflected within a local network may be more energy efficient than a fully acoustic one.
- Enhanced reliability and robustness, because there is an alternative mode in the event one form of communication becomes impaired.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Amplify and Forward |
AI | Artificial Intelligence |
AN | Artificial Noise |
A-RIS | Acoustic Reconfigurable Intelligent Surfaces |
ASC | Average Secrecy Capacity |
ASE | Average Spectral Efficiency |
AUV | Autonomous Underwater Vehicles |
BER | Bit Error Rates |
BFSK | Binary Frequency Shift Keying |
BPSK | Binary Phase Shift Keying |
CAFAB | Circular Autofocusing |
CBFSK | Coherent Binary Frequency Shift Keying |
CBPSK | Coherent Binary Phase Shift Keying |
CC | Channel Capacity |
CDOM | Colored Dissolved Organic Matter |
CIR | Channel Impulse Response |
CSI | Channel State Information |
CTD | Conductivity, Temperature, and Depth |
DBPSK | Differential Binary Phase Shift Keying |
DCM | Deep-Chlorophyll Maximum |
DF | Decode and Forward |
DMA | Distance-Based Mirror Assignment |
EMA | Equal Mirror Assignment |
EST | Effective Secrecy Throughput |
FSO | Free-Space Optical Communication |
HAPS | High-Altitude Platform Station |
HD | Heterodyne |
IMDD | Intensity Modulation Direct Detection |
IOPs | Inherent Optical Properties |
IoUT | Internet Of Underwater Things |
ISI | Intersymbol Interference |
LED | Light-Emitting Diode |
LOS | Line Of Sight |
LQAM-MPPM | L-Ary Quadrature Amplitude Modulation Multipulse Pulse-Position Modulation |
MC | Monte-Carlo |
MCUs | Microcontroller Unit |
mEGG | Mixture Exponential Generalized Gamma distribution |
ML-ARIS | Multilayer Acoustic Reconfigurable Intelligent Surface |
MRR | Modulating Retroreflector |
NCBFSK | Non-Coherent Binary Frequency Shift Keying |
NCBPSK | Non-Coherent Binary Phase Shift Keying |
NLOS | Non-Line-Of-Sight |
OFDM | Orthogonal Frequency Division Multiplexing |
OIRS | Optical Intelligent Reflecting Surface |
OMA | Orthogonal Multiple Access |
OOK | On-Off Keying |
OP | Outage Probability |
O-RIS | Optical Reconfigurable Intelligent Surfaces |
OSNR | Optical Signal-to-Noise Ratio |
OTOPS | Oceanic Turbulence Optical Power Spectrum |
P2P | Point-To-Point |
PDM | Polarization Division Multiplexing |
PMS | Planar Mirror-Array Surface |
PZT | Multiple Piezoelectric Ceramic |
QAM | Quadrature Amplitude Modulation |
RF | Radiofrequency |
RGB | Red, Green, Blue |
RIS | Reconfigurable Intelligent Surfaces |
ROP | Received Optical Power |
RSMA | Rate-Split Multiple Access |
RSSI | Received Signal Strength Indicator |
SA-RIS | Security-Based Adaptive Reconfigurable Intelligent Surface |
SIMO | Single Input Multiple Output |
SiPM | Silicon Photomultiplier |
SISO | Single-Input Single-Output |
SNR | Signal-To-Noise Ratio |
SOP | Secrecy Outage Probability |
SPAD | Single-Photon Avalanche Photodiode |
SPP | Surface Plasmon Polariton |
SPSC | Strictly Positive Secrecy Capacity |
STAR | Simultaneous Transmit and Reflect |
TIR | Total Internal Reflection |
UAV | Unmanned Aerial Vehicle |
UOWC | Underwater Optical Wireless Communication |
UWAC | Underwater Acoustic Communication |
UWC | Underwater Wireless Communication |
VLC | Visible Light Communication |
WDM | Wavelength Division Multiplexing |
References
- Kisseleff, S.; Chatzinotas, S.; Ottersten, B. Reconfigurable intelligent surfaces in challenging environments: Underwater, underground, industrial and disaster. IEEE Access 2021, 9, 150214–150233. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater Optical Wireless Communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Mohjazi, L.; Dobre, O.A.; Di Renzo, M.; Imran, M.A.; Haas, H. LiFi through reconfigurable intelligent surfaces: A new frontier for 6G? IEEE Veh. Technol. Mag. 2021, 17, 37–46. [Google Scholar] [CrossRef]
- Aboagye, S.; Ndjiongue, A.R.; Ngatched, T.M.; Dobre, O.A.; Poor, H.V. RIS-assisted visible light communication systems: A tutorial. IEEE Commun. Surv. Tutor. 2022, 25, 251–288. [Google Scholar] [CrossRef]
- Sun, S.; Wang, T.; Yang, F.; Song, J.; Han, Z. Intelligent reflecting surface-aided visible light communications: Potentials and challenges. IEEE Veh. Technol. Mag. 2021, 17, 47–56. [Google Scholar] [CrossRef]
- Fang, C.; Li, S.; Wang, Y.; Wang, K. Survey on Optical Wireless Communication with Intelligent Reflecting Surfaces. Photonics 2024, 11, 830. [Google Scholar] [CrossRef]
- Horsley, S.; Woolley, M. Zero-refractive-index materials and topological photonics. Nat. Phys. 2021, 17, 348–355. [Google Scholar] [CrossRef]
- Ndjiongue, A.R.; Ngatched, T.M.; Dobre, O.A.; Haas, H. Re-configurable intelligent surface-based VLC receivers using tunable liquid-crystals: The concept. J. Light. Technol. 2021, 39, 3193–3200. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chen, L.; Pu, M.; Jin, J.; Hong, M.; Luo, X. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 2017, 5, 1600502. [Google Scholar] [CrossRef]
- Díaz-Rubio, A.; Asadchy, V.S.; Elsakka, A.; Tretyakov, S.A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 2017, 3, e1602714. [Google Scholar] [CrossRef]
- Abdelhady, A.M.; Salem, A.K.S.; Amin, O.; Shihada, B.; Alouini, M.-S. Visible light communications via intelligent reflecting surfaces: Metasurfaces vs mirror arrays. IEEE Open J. Commun. Soc. 2020, 2, 1–20. [Google Scholar] [CrossRef]
- Naik, R.P.; Chung, W.-Y. Evaluation of reconfigurable intelligent surface-assisted underwater wireless optical communication system. J. Light. Technol. 2022, 40, 4257–4267. [Google Scholar] [CrossRef]
- Ata, Y.; Abumarshoud, H.; Bariah, L.; Muhaidat, S.; Imran, M.A. Intelligent reflecting surfaces for underwater visible light communications. IEEE Photonics J. 2023, 15, 1–10. [Google Scholar] [CrossRef]
- Haltrin, V.I. Chlorophyll-based model of seawater optical properties. Appl. Opt. 1999, 38, 6826–6832. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.T.; Van Thang, N.; Sy, T.D.; Ngoc, D.T.; Anh, D.T. Outage Performance of IRS-Assisted Underwater Optical Wireless Communication Systems over Combined Channel Model. In Proceedings of the 2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Montreal, QC, Canada, 21–23 June 2023; IEEE: New York, NY, USA, 2023; pp. 318–323. [Google Scholar]
- Ata, Y.; Gökçe, M.C.; Baykal, Y. Intelligent Reflecting Surface Aided Vehicular Optical Wireless Communication Systems using Higher-order Mode in Underwater Channel. IEEE Trans. Veh. Technol. 2024, 73, 11196–11208. [Google Scholar] [CrossRef]
- Salam, R.; Srivastava, A.; Bohara, V.A.; Ashok, A. An optical intelligent reflecting surface-assisted underwater wireless communication system. IEEE Open J. Commun. Soc. 2023, 4, 1774–1786. [Google Scholar] [CrossRef]
- Gan, Z.; Cox, M.; Dong, Y. On RIS-aided NLOS Underwater Wireless Optical Communication Systems. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–7. [Google Scholar]
- Wei, Z.; Wei, Z.; Fang, J.; Pan, J.; Wang, L.; Dong, Y. Impulse Response Modeling and Dynamic Analysis for SIMO UOWC Systems Enhanced by RIS-Equipped UUV. IEEE Trans. Veh. Technol. 2023, 73, 1540–1553. [Google Scholar] [CrossRef]
- Zhang, Q.; Yue, D.-W.; Xu, X.-Y. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Underwater Wireless Optical Communication Systems. IEEE Photonics J. 2024, 16, 7301914. [Google Scholar] [CrossRef]
- Odeyemi, K.O.; Owolawi, P.A.; Olakanmi, O.O. Performance analysis of reconfigurable intelligent surface assisted underwater optical communication system. Prog. Electromagn. Res. M 2020, 98, 101–111. [Google Scholar] [CrossRef]
- Zedini, E.; Oubei, H.M.; Kammoun, A.; Hamdi, M.; Ooi, B.S.; Alouini, M.-S. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun. 2019, 67, 2893–2907. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; da Costa, D.B.; Di Renzo, M.; Alouini, M.-S. On the performance of RIS-assisted dual-hop mixed RF-UWOC systems. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 340–353. [Google Scholar] [CrossRef]
- Salam, R.; Srivastava, A.; Bohara, V.A.; Ashok, A. Performance Comparison of IRS and DF Relay Assisted Mixed RF-Underwater Optical Communication System. In Proceedings of the 2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Gandhinagar, India, 18–21 December 2022; IEEE: New York, NY, USA, 2022; pp. 129–134. [Google Scholar]
- Kumar, L.B.; Naik, R.P.; Krishnan, P.; Raj, A.A.B.; Majumdar, A.K.; Chung, W.-Y. RIS assisted triple-hop RF-FSO convergent with UWOC system. IEEE Access 2022, 10, 66564–66575. [Google Scholar] [CrossRef]
- Ramavath, P.N.; Chung, W.-Y. Performance evaluation of re-configurable intelligent surface-assisted underwater and free-space wireless optical communication in the skip-zones. ICT Express 2024, 10, 320–329. [Google Scholar] [CrossRef]
- Rakib, M.A.; Ibrahim, M.; Badrudduza, A.S.M.; Ansari, I.S.; Chakravarty, S.; Ahmed, I. A RIS empowered THz-UWO relay system for air-to-underwater mixed network: Performance analysis with pointing errors. IEEE Internet Things J. 2024, 11, 17097–17112. [Google Scholar] [CrossRef]
- Deka, R.; Alam, M.S.; Ahmed, I.; Anees, S. Performance Analysis of a RIS-HAPS Assisted FSO-UWOC System for Ground-Air-Underwater Connectivity. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; IEEE: New York, NY, USA, 2024; pp. 1–5. [Google Scholar]
- Elsayed, M.; Samir, A.; El-Banna, A.A.A.; Khan, W.U.; Chatzinotas, S.; ElHalawany, B.M. Mixed RIS-Relay NOMA-Based RF-UOWC Systems. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Hossain, T.; Shabab, S.; Badrudduza, A.; Kundu, M.K.; Ansari, I.S. On the physical layer security performance over RIS-aided dual-hop RF-UOWC mixed network. IEEE Trans. Veh. Technol. 2022, 72, 2246–2257. [Google Scholar] [CrossRef]
- Sarawar, A.B.; Badrudduza, A.; Ibrahim, M.; Ansari, I.S.; Yu, H. Secrecy Performance Analysis of Integrated RF-UOWC IoT Networks Enabled by UAV and Underwater-RIS. IEEE Internet Things J. 2024, 12, 2592–2608. [Google Scholar] [CrossRef]
- Dang, T.S.; Van Toan, C.; Nguyen, T.V.; Dang, N. Secrecy performance analysis of a IRS-assisted underwater optical wireless communication system. J. Mil. Sci. Technol. 2024, 96, 21–29. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, X. A novel security-based adaptive reconfigurable intelligent surfaces assisted clustering strategy. Electron. Lett. 2024, 60, e70008. [Google Scholar] [CrossRef]
- Salam, R.; Bohara, V.A.; Srivastava, A. Smart Element Allocation Strategies for Dynamic Optical IRS in Underwater Wireless Communication. IEEE Trans. Veh. Technol. 2024, 74, 4349–4361. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans 2006, 111, C08005. [Google Scholar] [CrossRef]
- Waduge, T.G.; Seet, B.-C.; Vopel, K. Optimal Signal Wavelengths for Underwater Optical Wireless Communication under Sunlight in Stratified Waters. J. Sens. Actuator Netw. 2024, 13, 54. [Google Scholar] [CrossRef]
- Naik, R.P.; Salman, M.; Bolboli, J.; Shetty, S.; Chung, W.-Y. Multiuser data transmission aided by simultaneous transmit and reflect reconfigurable intelligent surface in underwater wireless optical communications. IEEE Trans. Veh. Technol. 2024, 73, 8420–8433. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.-C.; Meretska, M.L.; Elder, D.L.; Tamagnone, M.; Dalton, L.R.; Capasso, F. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun. 2021, 12, 5928. [Google Scholar] [CrossRef]
- Matsuo, T.; Mizuno, H.; Sasaki, F.; Yanagi, H. Indication of cooperative light amplification in 5,5″-bis (4-biphenylyl)-2,2′:5,2″-terthiophene single crystals at room temperature. Jpn. J. Appl. Phys. 2019, 59, SDDB02. [Google Scholar] [CrossRef]
- AbdElKader, A.G.; Allam, A.; Kato, K.; Shalaby, H.M. Performance enhancement of RIS-assisted MRR-UOWC systems using the spectral-power-efficient LQAM-MPPM. Opt. Commun. 2024, 559, 130444. [Google Scholar] [CrossRef]
- Zhao, F.; Lu, R.; Chen, X.; Jin, C.; Chen, S.; Shen, Z.; Zhang, C.; Yang, Y. Metalens-assisted system for underwater imaging. Laser Photonics Rev. 2021, 15, 2100097. [Google Scholar] [CrossRef]
- Ren, Y.; Li, L.; Wang, Z.; Kamali, S.M.; Arbabi, E.; Arbabi, A.; Zhao, Z.; Xie, G.; Cao, Y.; Ahmed, N.; et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci. Rep. 2016, 6, 33306. [Google Scholar] [CrossRef]
- Hu, J.; Guo, Z.; Shi, J.; Jiang, X.; Chen, Q.; Chen, H.; He, Z.; Song, Q.; Xiao, S.; Yu, S.; et al. A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications. Nat. Commun. 2024, 15, 2944. [Google Scholar] [CrossRef]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Efremidis, N.K.; Chen, Z.; Segev, M.; Christodoulides, D.N. Airy beams and accelerating waves: An overview of recent advances. Optica 2019, 6, 686–701. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Peng, Q.; Zhao, S. Propagation characteristics of autofocusing Airy beam with power exponential phase vortex in weak anisotropic oceanic turbulence. J. Mod. Opt. 2021, 68, 1059–1065. [Google Scholar] [CrossRef]
- Zhang, X.G.; Sun, Y.L.; Zhu, B.; Tian, H.W.; Wang, B.Y.; Zhang, Z.; Qiu, C.-W.; Cui, T.J.; Jiang, W.X. Wireless microwave-to-optical conversion via programmable metasurface without DC supply. Nat. Commun. 2025, 16, 528. [Google Scholar] [CrossRef]
- Choi, K.-H.; Choi, J.W.; Kim, S.; Dahl, P.H.; Dall’Osto, D.; Song, H. Experimental Study on Performance Improvement of Underwater Acoustic Communication Using a Single Vector Sensor. IEEE J. Ocean. Eng. 2024, 49, 1574–1587. [Google Scholar] [CrossRef]
- Liao, Y.; Zhai, N.; Song, Y.; Wang, H.; Han, Y.; Xu, N. Performance Analysis of Acoustic RIS-Assisted Wireless Underwater Communications. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, H.; Akyildiz, I.F. High-Data-Rate Long-Range Underwater Communications via Acoustic Reconfigurable Intelligent Surfaces. IEEE Commun. Mag. 2022, 60, 96–102. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Z.; Guo, H.; Wang, P.; Akyildiz, I.F. Designing Acoustic Reconfigurable Intelligent Surface for Underwater Communications. IEEE Trans. Wirel. Commun. 2023, 22, 8934–8948. [Google Scholar] [CrossRef]
- Edemen, C.; Altabbaa, M.T.; Uysal, M. Channel Modeling of Reconfigurable Intelligent Surface-aided Underwater Acoustic Communication System. In Proceedings of the 2024 32nd Signal Processing and Communications Applications Conference (SIU), Mersin, Turkiye, 15–18 May 2024; pp. 1–3. [Google Scholar] [CrossRef]
- Silva, A.; Zabel, F.; Martins, C.; Ijaz, S.; Jesus, S. An environmental equalizer for underwater acoustic communications Tested at Hydralab III. In Hydralab III Joint User Meeting; Coastal Research Centre FZK, University of Hannover: Hannover, Germany; Technical University Braunschweigh: Braunschweig, Germany, 2010. [Google Scholar]
- Song, H. Bidirectional equalization for underwater acoustic communication. J. Acoust. Soc. Am. 2012, 131, EL342–EL347. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Zhou, S.; Ball, K.; Stojanovic, M.; Freitag, L.; Willett, P. MIMO-OFDM for high-rate underwater acoustic communications. IEEE J. Ocean. Eng. 2009, 34, 634–644. [Google Scholar]
- Zhou, M.; Zhang, H.; Lv, T.; Gao, Y.; Duan, Y. Spatial diversity processing mechanism based on the distributed underwater acoustic communication system. PLoS ONE 2024, 19, e0296117. [Google Scholar] [CrossRef]
- Zhao, L.; Tan, J.; Wang, J.; Akyildiz, I.F.; Sun, Z. Covering Underwater Shadow Zones using Acoustic Reconfigurable Intelligent Surfaces. arXiv 2025, arXiv:250102256. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Z.; Song, Z.; Chen, Y.; Zhang, X. Reconfigurable Intelligent Surface Transmission for Data Importance Classification in Underwater Acoustic Networks with Energy Holes. In Proceedings of the 2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Zhengzhou, China, 14–17 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Song, A. Experimental Study of Underwater Acoustic Reconfigurable Intelligent Surfaces with In-Phase and Quadrature Modulation. arXiv 2024, arXiv:241112906. [Google Scholar] [CrossRef]
- Chen, Z.; Du, J.; Jiang, C.; Han, Z. Joint Optimization of Communication Enhancement and Location Privacy Protection in RIS-Assisted Underwater Communication System. arXiv 2024, arXiv:241200367. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Diao, J.; Liu, C.-H.; Song, A. Underwater Acoustic Reconfigurable Intelligent Surfaces: From Principle to Practice. arXiv 2024, arXiv:241217865. [Google Scholar] [CrossRef]
- Kameda, T.; Matsumura, S. Chlorophyll biomass off Sanriku, northwestern Pacific, estimated by Ocean Color and Temperature Scanner (OCTS) and a vertical distribution model. J. Oceanogr. 1998, 54, 509–516. [Google Scholar] [CrossRef]
- Johnson, L.J.; Green, R.J.; Leeson, M.S. Underwater optical wireless communications: Depth dependent variations in attenuation. Appl. Opt. 2013, 52, 7867–7873. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. JOSA 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Bird, R.E.; Riordan, C. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Appl. Meteorol. Climatol. 1986, 25, 87–97. [Google Scholar] [CrossRef]
- NREL SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. Available online: https://www.nrel.gov/grid/solar-resource/smarts.html (accessed on 21 August 2024).
- Gueymard, C. SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995; Volume 1. [Google Scholar]
- Spectral Sciences Inc. MODTRAN®. Available online: http://modtran.spectral.com/ (accessed on 21 August 2024).
- Sticklus, J.; Hieronymi, M.; Hoeher, P.A. Effects and constraints of optical filtering on ambient light suppression in LED-based underwater communications. Sensors 2018, 18, 3710. [Google Scholar] [CrossRef] [PubMed]
- Waduge, T.G.; Seet, B.-C.; Vopel, K. Modeling Ambient Light in Stratified Waters for Underwater Optical Wireless Communication. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Cronin, T.W.; Marshall, J. Patterns and properties of polarized light in air and water. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chu, J.; Zhang, R.; Tian, L.; Gui, X. Turbid underwater polarization patterns considering multiple Mie scattering of suspended particles. Photogramm. Eng. Remote Sens. 2020, 86, 737–743. [Google Scholar] [CrossRef]
- Cheng, H.; Chu, J.; Zhang, R.; Tian, L.; Gui, X. Underwater polarization patterns considering single Rayleigh scattering of water molecules. Int. J. Remote Sens. 2020, 41, 4947–4962. [Google Scholar] [CrossRef]
- Marshall, N.J.; Powell, S.B.; Cronin, T.W.; Caldwell, R.L.; Johnsen, S.; Gruev, V.; Chiou, T.-H.S.; Roberts, N.W.; How, M.J. Polarisation signals: A new currency for communication. J. Exp. Biol. 2019, 222, jeb134213. [Google Scholar] [CrossRef]
- Raihan, A.J.; Abas, P.E.; De Silva, L.C. Review of underwater image restoration algorithms. IET Image Process. 2019, 13, 1587–1596. [Google Scholar] [CrossRef]
- Mullen, L.; Cochenour, B.; Rabinovich, W.; Mahon, R.; Muth, J. Backscatter suppression for underwater modulating retroreflector links using polarization discrimination. Appl. Opt. 2009, 48, 328–337. [Google Scholar] [CrossRef]
- Vasilkov, A.P.; Goldin, Y.A.; Gureev, B.A.; Hoge, F.E.; Swift, R.N.; Wright, C.W. Airborne polarized lidar detection of scattering layers in the ocean. Appl. Opt. 2001, 40, 4353–4364. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, Q.; Wan, Z.; Zhang, Z.; Qin, J. Study on the polarization pattern induced by wavy water surfaces. Remote Sens. 2023, 15, 4565. [Google Scholar] [CrossRef]
- Molkov, A.A.; Dolin, L.S. The Snell’s window image for remote sensing of the upper sea layer: Results of practical application. J. Mar. Sci. Eng. 2019, 7, 70. [Google Scholar] [CrossRef]
- Lewis, G.D.; Jordan, D.L.; Roberts, P.J. Backscattering target detection in a turbid medium by polarization discrimination. Appl. Opt. 1999, 38, 3937–3944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Huang, A.; Hu, X. Effect of underwater suspended particles on the transmission characteristics of polarized lasers. JOSA A 2019, 36, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, O. Light propagation in a turbulent ocean. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 2019; Volume 64, pp. 1–43. [Google Scholar]
- Baykal, Y.; Ata, Y.; Gökçe, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 2022, 156, 108624. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Zhang, A.; Zhang, L.; Li, D.; Zhang, X. Improving the Estimation of Temperature and Salinity by Assimilation of Observed Sound Speed Profiles. J. Atmospheric Ocean. Technol. 2021, 38, 1277–1289. [Google Scholar] [CrossRef]
- Thorsos, E.I. Acoustic scattering from a “‘Pierson–Moskowitz’” sea surface. J. Acoust. Soc. Am. 1990, 88, 335–349. [Google Scholar] [CrossRef]
- Higgins, A.; Siderius, M. Acoustic scattering from dynamic rough ocean surfaces using finite-difference time-domain modeling techniques. J. Acoust. Soc. Am. 2022, 152, A252–A253. [Google Scholar] [CrossRef]
- Sun, D.; Wu, J.; Hong, X.; Liu, C.; Cui, H.; Si, B. Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts. J. Acoust. Soc. Am. 2023, 153, 1027–1041. [Google Scholar] [CrossRef]
- Badiey, M.; Wan, L.; Escobar-Amado, C.D. Frequency dependent effects of environmental parameters on the broadband acoustic wave propagation in shallow water waveguides. J. Acoust. Soc. Am. 2023, 154, A134. [Google Scholar] [CrossRef]
- Webb, P. Introduction to Oceanography; Roger Williams University: Bristol, RI, USA, 2021. [Google Scholar]
- Lin, B.; Tang, X.; Ghassemlooy, Z.; Li, Y.; Zhang, M.; Wu, Y.; Li, H. A NOMA scheme for visible light communications with single carrier transmission and frequency-domain successive interference cancellation. Optik 2019, 183, 445–450. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef]
- Wang, C.; Wen, Y.; Sun, J.; Zhou, J. Recent progress on optical frequency conversion in nonlinear metasurfaces and nanophotonics. ES Mater. Manuf. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Gao, J.; Vincenti, M.A.; Frantz, J.; Clabeau, A.; Qiao, X.; Feng, L.; Scalora, M.; Litchinitser, N.M. All-optical tunable wavelength conversion in opaque nonlinear nanostructures. Nanophotonics 2022, 11, 4027–4035. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Deshpande, R.; Bozhevolnyi, S.I. Bifunctional gap-plasmon metasurfaces for visible light: Polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl. 2018, 7, 17178. [Google Scholar] [CrossRef]
- Ueno, K.; Oshikiri, T.; Sun, Q.; Shi, X.; Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 2017, 118, 2955–2993. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, Y.; Yang, R.; Geng, G.; Fu, Q.; Gu, C.; Li, J.; Zhang, F. Polarization-multiplexed silicon metasurfaces for multi-channel visible light modulation. Adv. Funct. Mater. 2022, 32, 2200013. [Google Scholar] [CrossRef]
- Qian, Z.; Tian, S.; Zhou, W.; Wang, J.; Guo, H.; Zhuang, S. Polarization-modulated broadband achromatic bifunctional metasurface in the visible light. Opt. Express 2023, 31, 10905–10917. [Google Scholar] [CrossRef]
- Giuliano, G.; Laycock, L.; Rowe, D.; Kelly, A.E. Solar rejection in laser based underwater communication systems. Opt. Express 2017, 25, 33066–33077. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, W.; Wang, L.; Li, W.; Gong, L.; Cheng, W.; Chen, H.; Gruska, J. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment. Sci. Rep. 2019, 9, 2025. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel beam: Significance and applications—A progressive review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S. Underwater optical wireless communication network. Opt. Eng. 2010, 49, 015001. [Google Scholar] [CrossRef]
- Waduge, T.G.; Seet, B.-C.; Vopel, K. Geometric Implications of Photodiode Arrays on Received Power Distribution in Mobile Underwater Optical Wireless Communication. Sensors 2024, 24, 3490. [Google Scholar] [CrossRef]
- Hoeher, P.A.; Sticklus, J.; Harlakin, A. Underwater Optical Wireless Communications in Swarm Robotics: A Tutorial. IEEE Commun. Surv. Tutor. 2021, 23, 2630–2659. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Tian, P.; Liu, X.; Yi, S.; Huang, Y.; Zhang, S.; Zhou, X.; Hu, L.; Zheng, L.; Liu, R. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 2017, 25, 1193–1201. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, H. Real-time underwater wireless optical communication system based on leds and estimation of maximum communication distance. Sensors 2023, 23, 7649. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and implementation of more than 50m real-time underwater wireless optical communication system. J. Light. Technol. 2022, 40, 3654–3668. [Google Scholar] [CrossRef]
- Romdhane, I.; Kaddoum, G. A Reinforcement-Learning-Based Beam Adaptation for Underwater Optical Wireless Communications. IEEE Internet Things J. 2022, 9, 20270–20281. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, M.; Cheng, J. Deep learning aided robust joint channel classification, channel estimation, and signal detection for underwater optical communication. IEEE Trans. Commun. 2020, 69, 2290–2303. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Zhang, R.; Yang, L. Routing protocol design for underwater optical wireless sensor networks: A multiagent reinforcement learning approach. IEEE Internet Things J. 2020, 7, 9805–9818. [Google Scholar] [CrossRef]
- Weng, Y.; Pajarinen, J.; Akrour, R.; Matsuda, T.; Peters, J.; Maki, T. Reinforcement learning based underwater wireless optical communication alignment for autonomous underwater vehicles. IEEE J. Ocean. Eng. 2022, 47, 1231–1245. [Google Scholar] [CrossRef]
- He, Z.; Shen, H.; Xu, W.; Zhao, C. Low-Cost Passive Beamforming for RIS-Aided Wideband OFDM Systems. IEEE Wirel. Commun. Lett. 2022, 11, 318–322. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkatesan, R.; Dobre, O.A.; Li, C. Efficient Estimation and Prediction for Sparse Time-Varying Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2020, 45, 1112–1125. [Google Scholar] [CrossRef]
- Abdallah, A.; Celik, A.; Mansour, M.M.; Eltawil, A.M. Multi-Agent Deep Reinforcement Learning for Beam Codebook Design in RIS-Aided Systems. IEEE Trans. Wirel. Commun. 2024, 23, 7983–7999. [Google Scholar] [CrossRef]
- Qiao, Y.; Niu, Y.; Han, Z.; Mao, S.; He, R.; Wang, N.; Zhong, Z.; Ai, B. Joint optimization of resource allocation and user association in multi-frequency cellular networks assisted by RIS. IEEE Trans. Veh. Technol. 2023, 73, 826–842. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Ding, Z.; Song, L.; Poor, H.V. Joint Design for Simultaneously Transmitting and Reflecting (STAR) RIS Assisted NOMA Systems. IEEE Trans. Wirel. Commun. 2023, 22, 611–626. [Google Scholar] [CrossRef]
- Jan, Q.; Chao, Y.; Zhiwen, P.; Furqan, M.; Ali, Z.; Xiaohu, Y. Improved belief propagation decoder for LDPC-CRC-polar codes with bit-freezing. China Commun. 2024, 21, 135–148. [Google Scholar] [CrossRef]
- Lin, Z.; Ni, Z.; Kuang, L.; Jiang, C.; Huang, Z. Dynamic Beam Pattern and Bandwidth Allocation Based on Multi-Agent Deep Reinforcement Learning for Beam Hopping Satellite Systems. IEEE Trans. Veh. Technol. 2022, 71, 3917–3930. [Google Scholar] [CrossRef]
- Zhang, Y.; Mou, Z.; Gao, F.; Jiang, J.; Ding, R.; Han, Z. UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2020, 69, 11599–11611. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.-W.; Chen, Q.; Liu, L. Effect of hydrostatic pressure on the corrosion behavior of HVOF-sprayed Fe-based amorphous coating. J. Alloys Compd. 2018, 758, 108–115. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Sci. Total Environ. 2021, 766, 144469. [Google Scholar] [CrossRef] [PubMed]
- Parra, C.; Dorta, F.; Jimenez, E.; Henríquez, R.; Ramírez, C.; Rojas, R.; Villalobos, P. A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material. J. Nanobiotechnology 2015, 13, 82. [Google Scholar] [CrossRef]
- ‘LUMA’, Hydromea. Available online: https://www.hydromea.com/underwater-wireless-communication (accessed on 19 April 2024).
- Cong, L.; Srivastava, Y.K.; Solanki, A.; Sum, T.C.; Singh, R. Perovskite as a platform for active flexible metaphotonic devices. Acs Photonics 2017, 4, 1595–1601. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Renzo, M.D.; Xiao, H.; Ai, B. Performance Analysis of RIS-Aided Systems with Practical Phase Shift and Amplitude Response. IEEE Trans. Veh. Technol. 2021, 70, 4501–4511. [Google Scholar] [CrossRef]
- Wang, J.; Shi, W.; Xu, L.; Zhou, L.; Niu, Q.; Liu, J. Design of optical-acoustic hybrid underwater wireless sensor network. J. Netw. Comput. Appl. 2017, 92, 59–67. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, L.; Bithas, P.S.; Ansari, I.S.; Li, X.; Alouini, M.-S. Performance analysis of mixed underwater acoustic/optical relaying systems. IEEE Trans. Wirel. Commun. 2024, 23, 11357–11371. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, A.; Tong, F. Underwater acoustic channel characteristics and communication performance at 85 kHz. J. Acoust. Soc. Am. 2017, 142, EL350–EL355. [Google Scholar] [CrossRef] [PubMed]
- Rudander, J.; van Walree, P.A.; Husøy, T.; Orten, P. Very-high-frequency single-input–multiple-output acoustic communication in shallow water. IEEE J. Ocean. Eng. 2018, 44, 943–955. [Google Scholar] [CrossRef]
- Ahmed, R.; Mir, F.; Banerjee, S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 2017, 26, 085031. [Google Scholar] [CrossRef]
- Fang, L.H.; Rahim, R.; Fahmi, M.I.; Kupusamy, V. Modelling and Characterization Piezoelectric Transducer for Sound Wave Energy Harvesting. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 102, 81–98. [Google Scholar] [CrossRef]
Fixed Parameters (If Not Stated) | Metric | LOS Link | = 1/4/16) | = 1/4/16) | Observations |
---|---|---|---|---|---|
Plane wave, = 470 nm, = 0.056 m−1 Direct Link: = 100 m, = 10−6 m2/s3, 10−2 K2/s, = 2.01 Source to RIS: = 50 m, = 10−8 m2/s3, 10−3 K2/s, = 57.32 RIS to destination: = 100 m, = 10−8 m2/s3, 10−2 K2/s, = 1.31 | When BER = 10−5 (BPSK coherent) | SNR = ~93 dB | SNR = 49/46/43 dB | SNR = 33/28/18 dB | Coherent ~2–3 dB better than non-coherent |
When BER = 10−5 (BFSK coherent) | SNR = ~96 dB | SNR = 46.5 dB ( = 16) | SNR = 20 dB ( = 16) | Coherent ~2–3 dB better than non-coherent | |
When OP = 2 × 10−5 at threshold SNR of 5 dB | SNR = ~100 dB | SNR = 57.5/54.5/51.5 dB | SNR = 41/36/25 dB | × 4 → ~2 dB (i.i.d) or ≥6 dB (i.ni.d) gain, for given OP. | |
Channel capacity (CC) | For CC ~17 bits/s/Hz: IM/DD: ~60 dB; HD: ~56 dB SNR | ~30 dB SNR gain ( = 4); ~50 dB gain ( = 16) compared to = 1, for CC at 18 bits/s/Hz | ~5 dB SNR gain ( = 4); ~15 dB SNR gain ( = 16) compared to = 1, for CC at 4 bits/s/Hz. | HD ~4 dB better than IMDD for all cases. |
Fixed Parameters (If Not Stated) | Parameter Change | Conditions | Outage Probability |
---|---|---|---|
Plane wave, = 470 nm = 15 °C = 20 ppt = 10−5 m2/s3 10−2 K2/s = −2 °C/ppt = 2 cm = 2 cm = = 40 dB = 50 = 1 = 0.03 mg/m3 = 3 × 0.5 L = 20 m | Temperature dissipation rate (10−10 → 10−4 K2/s) | = 0 (No RIS, LOS) = 100 = 500 = 1000 | 7 × 10−4 → 3 × 10−1 2 × 10−6 → 8 × 10−4 3 × 10−7 → 1 × 10−4 1 × 10−7 → 4 × 10−5 (reaches saturation with higher ) |
Energy dissipation rate ε (10−10 → 10−2 m2/s3) | = 0 (No RIS, LOS) = 100 = 500 = 1000 | 1.5 → 7 × 10−3 4 × 10−4 → 2 × 10−5 5 × 10−5 → 2.5 × 10−6 2 × 10−5 →1 × 10−6 (reaches saturation with higher ) | |
Link length (10 → 40 m) | = 2 cm, = 50 | 2.4 × 10−5 → 2.6 × 10−3 | |
IRS scaling at = 20 m | : 0 → 100 → 500 → 1000 | 2.4 × 10−2 → 6.5 × 10−5 → 8.3 × 10−6 → 3.4 × 10−6 | |
Receiver aperture (0 → 2 cm) | ≥ 100 | ~ = 2 cm is 3 times better than a 0 cm point receiver | |
Water type (absorption/scattering) | = 50, L = 10 m | At OP ≈ 10−4, SNR is: Pure water: 32 dB Clear ocean: 36 dB Coastal ocean: 42 dB Harbor: 61 dB |
Fixed Parameters | Metric | Condition | LOS (No RIS) | RIS–Specular Reflection | RIS–Beam Steering |
---|---|---|---|---|---|
= blue-green band = 0.305 m−1 (coastal water) 10° emission divergence 10° receiver field-of-view 50 cm aperture 102 × 100 RIS array 0.01 × 0.01 m2 element size | Temporal dispersion (10 m link) | Peak width at –20 dB | Approx. 0.550 ns | Approx. 0.425 ns | Approx. 0.162 ns |
Temporal dispersion (20 m link) | Peak width at –20 dB | Approx. 0.788 ns | Approx. 0.600 ns | Approx. 0.325 ns | |
3-dB Bandwidth (10 m link) | Relative to LOS | Baseline | ~0.7 × higher | ~1.3 × higher | |
3-dB Bandwidth (20 m link) | Relative to LOS | Baseline | ~0.5 × higher | ~1.5 × higher | |
BER (10 m, 1 Gbps OOK) | SNR = 0 dB | ~10−1 | ~<10−8 | <10−8 | |
BER (20 m, 1 Gbps OOK) | SNR = 15 dB | ~8 × 10−2 | ~10−5 | <10−8 |
Metric | Turbulence | OIRS | PMS | NLOS | OIRS Advantage over PMS |
---|---|---|---|---|---|
Spectral Efficiency (bits/s/Hz) | Weak ( = 0.2178) | ~15 | ~7.5 | ~6.5 | ~2.00 |
Moderate ( = 1.9328) | ~12 | ~5.5 | ~4 | ~2.18 | |
Energy Efficiency (10 W transmit power) | - | = 1 m2 → 0.48 = 4 m2 → 0.6 = 9 m2 → 0.67 = 16 m2 → 0.74 | 0.51 | 0.45 | = 1 m2 → ~0.94 = 4 m2 → ~1.18 = 9 m2 → ~1.31 = 16 m2 → ~1.45 |
Outage Probability | Weak ( = 0.2178) | ~10−2 | ~1.2 × 10−1 | ~1.5 × 10−1 | ~12 |
Moderate ( = 1.9328) | ~6.5 × 10−2 | ~5.5 × 10−1 | ~7.5 × 10−1 | ~8.5 | |
BER | Weak ( = 0.2178) | ~2 × 10−3 | ~2 × 10−2 | ~3 × 10−2 | ~10 |
Moderate ( = 1.9328) | ~7 × 10−3 | ~7.5 × 10−2 | ~2 × 10−1 | ~11 |
Reference | Key Contributions |
---|---|
Odeyemi et al. [21] |
|
Li et al. [23] |
|
Salam et al. [24] |
|
Elsayed et al. [29] |
|
Kumar et al. [25] |
|
Ramavath et al. [26] |
|
Deka et al. [28] |
|
Rakib et al. [27] |
|
Reference | Key Contributions |
---|---|
Hossain et al. [30] |
|
Sarawar et al. [31] |
|
Sy et al. [32] |
|
Tian and Zheng [33] |
|
Reference | Key Contributions |
---|---|
Salam et al. [34] |
|
Naik et al. [37] |
|
AbdElKader et al. [40] |
|
BER | SNR | Energy | |
---|---|---|---|
A-RIS | Achieves 8 b/s/Hz, with an average BER lower than 10−4 [51]. | The average received SNR can be improved by 20.8 dB [51]. | Operates in passive mode, requiring no power amplifiers or complex signal processing units. Power consumption is very low [51]. |
Adaptive Equalizer | Spectral efficiency of 0.4 b/s/Hz, where the BER decreases from 9.2% to 1.6% [53]. | Experiments show that the output SNR can be increased by 0.4–1.8 dB [54]. | Higher power consumption, since complex signal processing is required. |
MIMO | Spectral efficiency of 1.76 b/s/Hz, achieving zero BER [55]. | Compared with single-link systems, MIMO achieves a diversity gain of more than 5.2 dB [56] | Higher power consumption, as multiple transmitters and complex signal processing are needed. |
Reference | Key Issue | Solution | Performance |
---|---|---|---|
Sun et al. [50] | Incompatibility between high data rate and long range in underwater acoustic communications. | Novel acoustic RIS hardware using piezoelectric reflector arrays and operation protocols. | Channel Capacity: P2P data rate increased from <2 kbps to hundreds of kbps (two orders of magnitude).Coverage: Achieved communication ranges of several kilometers.Energy Efficiency: Total power consumption for an active 60 × 60 RIS is 90 mW.System Complexity: Lightweight protocol requiring no changes to end-user devices. |
Wang et al. [51] | Low data rate and high cost of MIMO in UWA communications. | Active piezoelectric RIS hardware and hybrid wide-narrowband beamforming. | Channel Capacity: System capacity increased by up to 8.2 bps/Hz.Energy Efficiency: Total power consumption reduced by over 95% to achieve the same modulation (QAM256).System Complexity: Lightweight non-intrusive protocol requiring no modifications to end devices. |
Edemen et al. [52] | Channel fading and multipath limit UWAC transmission efficiency. | Model RIS-assisted UWAC channel and analyze CIR under different RIS configurations. | RIS maintains underwater acoustic channel sparseness. |
Zhao et al. [57] | Shadow zones cause discontinuous underwater network coverage. | Deploy acoustic RIS at sound channel axis (deep sea) and seabed (shallow sea) to actively control acoustic reflection for enhanced coverage. | Coverage: <20% without RIS, nearly 100% with optimal RIS deployment. System Complexity: 10 RIS units for 10 km shallow sea coverage; 20 units for non-optimal placement. Propagation Delay: 99% phase deviation reduction after correction for 50 cm vertical displacement. Energy Efficiency: RIS array size N = 20 maintains stable performance across deployment depths. |
Dong et al. [58] | Energy holes cause data transmission interruption and accumulation in UWAN. | Use AUV equipped with RIS for classified data forwarding, optimize RIS chunking scheme based on data importance using genetic algorithm. | Transmission Time: 59% reduction compared to AUV-only (non-RIS) scheme. Transmission Efficiency: Simultaneous reflection to multiple destination nodes. System Complexity: 30 × 30 RIS array implementation Energy Efficiency: Enhanced through data importance classification and RIS chunking optimization. |
Chen et al. [60] | Location privacy vulnerable to eavesdropping nodes in underwater acoustic communication. | Design RIS system with artificial noise module, jointly optimize transmit beamforming, reflective precoding and noise factor for enhanced communication, and privacy protection. | Location Error: 14.5× increase compared to conventional RIS. Coverage: 97% improvement over non-RIS system. System Complexity: 512 reflection elements RIS array. |
Luo et al. [61] | Address incompatibility between acoustic wave physics and existing RF-RIS designs. | Design 1-bit phase coding UA-RIS based on load network with 24 reflection units for passive acoustic beamforming. | Propagation Delay: 20 ms phase switching period at 21 m communication range. System Complexity: 6 × 4 array with dual-PZT reflection units. Energy Efficiency: Phase manipulation requires only several mW, suitable for energy harvesting. |
Liao et al. [49] | High transmission power and strong interference. | Jointly optimizing acoustic RIS reflection angle and signal frequency to minimize total transmission power. | Channel Capacity: Channel capacity is improved through optimization, with specific values dependent on transmission distance and frequency.Energy Efficiency: The lowest interference reaches −30 dB at the optimal reflection angle (0°) and frequency (4 × 105 Hz), indicating significant energy efficiency improvement. |
O-RIS | A-RIS | |
---|---|---|
Operating Principles | Manipulates the electromagnetic properties (e.g., refractive index, permittivity) of RIS elements to alter the phase, amplitude, and polarization of incident light waves, thereby reshaping the optical field. | Manipulates the mechanical vibration characteristics (via the piezoelectric effect) of RIS elements to alter the reflection phase of incident sound waves, achieving acoustic field focusing and beamforming. |
Physical Medium | Electromagnetic Waves | Mechanical waves. |
Hardware Implementation | Mirror-arrays, metasurfaces | Piezoelectric transducer arrays. |
Key Advantages | Extremely high bandwidth, very high data rates, low latency, immunity to electromagnetic interference. | Long propagation distance, strong non-line-of-sight capability, technology is relatively mature. |
Challenges | 1. Short Propagation Distance 2. Line-of-Sight Dependency 3. Ambient Light Noise 4. Turbulence Effects | 1. Limited Bandwidth 2. Multipath Effects 3. Wideband Beam Squint 4. Dynamic Channel |
Channel Modeling | Focuses on absorption/scattering coefficients (related to Chl-a, CDOM, etc.), turbulence models, and pointing errors. | Focuses on ray tracing, multipath delay spread, sound speed profiles, and the formation and coverage of acoustic shadow zones. |
Research Directions | Hybrid FSO/RF-UOWC networks, physical layer security, NOMA/RSMA for multiuser access, STAR-RIS, metasurface-based higher-order beam generation, and signal conversion. | Hardware design and integration, wideband beamforming algorithms, lightweight communication protocols, shadow zone coverage, and network energy efficiency. |
Applications | High-speed underwater data center interconnects, high-rate data offloading from AUVs to base stations, real-time high-definition video streaming, secure short-range communications. | Remote data collection from underwater sensor networks, cross-basin communication, underwater navigation and positioning, long-term low-power communication with surface vessels. |
Type | (mg m−3) | (mg m−2) | (mg m−2) | (mg m−3) | (m) | (m) |
---|---|---|---|---|---|---|
S1 | 0.0429 | −0.103 | 11.86 | 0.174 | 114.6 | 415.5 |
S2 | 0.0805 | −0.261 | 13.86 | 0.237 | 90.6 | 309.5 |
S3 | 0.0801 | −0.284 | 18.54 | 0.244 | 79.9 | 282.2 |
S4 | 0.144 | −0.544 | 15.42 | 0.300 | 62.2 | 264.2 |
S5 | 0.211 | −1.05 | 14.37 | 0.389 | 43.3 | 200.7 |
S6 | 0.160 | −0.706 | 21.24 | 0.460 | 31 | 226.8 |
S7 | 0.332 | −1.96 | 20.06 | 0.637 | 20 | 169.1 |
S8 | 1.014 | −9.09 | 17.48 | 1.31 | 13.9 | 111.5 |
S9 | 0.555 | 0 | 90.02 | 3.17 | 9.9 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govinda Waduge, T.; Yang, Y.; Seet, B.-C. A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions. J. Sens. Actuator Netw. 2025, 14, 97. https://doi.org/10.3390/jsan14050097
Govinda Waduge T, Yang Y, Seet B-C. A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions. Journal of Sensor and Actuator Networks. 2025; 14(5):97. https://doi.org/10.3390/jsan14050097
Chicago/Turabian StyleGovinda Waduge, Tharuka, Yang Yang, and Boon-Chong Seet. 2025. "A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions" Journal of Sensor and Actuator Networks 14, no. 5: 97. https://doi.org/10.3390/jsan14050097
APA StyleGovinda Waduge, T., Yang, Y., & Seet, B.-C. (2025). A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions. Journal of Sensor and Actuator Networks, 14(5), 97. https://doi.org/10.3390/jsan14050097