RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor
Abstract
:1. Introduction
- We propose a novel but efficient and easy-to-utilise Continuous-Wave (CW) RFSoC digital microwave Doppler motion sensor [6] framework implemented on the RFSoC without the need to externally pre-up- and downconvert the RF, leading to an improved performance.
- To achieve high accuracy detection for Doppler return measurements, we propose a digital decimation instead of an external mixer by extending the RFSoC hardware ‘decimation’ with soft decimation filters.
- We demonstrate how the new digital advancements in RF can provide several advantages over the traditional analogue methods in the ISM frequency band.
- The sensor trigger response to a motion event is near instant, with a low false alarm rate to non-motion events.
- The proposed sensor is coupled with a bespoke patch antenna, designed to give a quasi-hemispherical beam shape.
2. Current Context
2.1. Doppler Effect
2.2. Doppler Return
2.3. Phase Vector
2.4. Synchronous Detector
3. Proposed Solution
3.1. Transmitted Signal
3.2. Received Signal
3.3. Proposed RFSoC FPGA Design
3.4. Phase-Noise Considerations
3.5. Signal Decimation
3.6. Noise Gate Filter
3.7. FFT Alternatives
4. Experimental Setup
5. Experimental Results
6. Case Study (Using Directional Antennas)
6.1. Directional Antennas
6.2. Distance (Using the Zero-Crossing Technique)
6.3. Amplitude Zoning
6.4. Range Factor
6.5. Range Factor—Typical Environment
6.6. Charge Pump
6.7. Sensitivity Zoning
6.8. Results
6.9. Case Study Conclusion
7. Conclusions
8. Future Improvements
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobden, M.; Hobden, P.; Bradbury, M.; Hilder, G. Intruder Alarm. U.S. Patent 20070216529, 20 September 2007. [Google Scholar]
- Redfern, S.W. A radar based mass movement sensor for automotive security applications. In Proceedings of the IEE Colloquium on Vehicle Security Systems, London, UK, 8 October 1993. [Google Scholar]
- Milind, P.; Murat, T.; Dan, W.; Murtaza, A. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- King, J. Microwave Homodyne System, 2nd ed.; Paterson Wiley: Stevenage, UK, 1978. [Google Scholar]
- Pilard, R.; Chantier, N.; Breysse, S.; Rohou, J. On the Way to RF Softwarization, Teledyne e2v Data Converters Push Digital Signal Processing Boundaries with Direct Access to Ka Band. Available online: https://semiconductors.teledyne-e2v.com/en/newsroom/how-to-sample-x-through-ka-band-rf-to-support-sdr-systems/ (accessed on 5 June 2024).
- Baans, O.S.; Jambek, A.B. Implementation of an ARM-based system using a Xilinx ZYNQ SoC. Electr. Eng. Comput. Sci. 2019, 13, 2502–4752. [Google Scholar] [CrossRef]
- Matthew, G. 802.11 Wireless Networks, 1st ed.; OReilly: Sebastopol, CA, USA, 2005. [Google Scholar]
- Christian, A. Über das Farbige Licht der Doppelsterne. 1842. Available online: https://www.britannica.com/topic/Uber-das-farbige-Licht-der-Doppelsterne (accessed on 5 June 2024).
- Skolnik, M. Introduction to Radar Systems, 3rd ed.; McGraw Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Coates, R. General Angle Modulated Sinusoid; Macmillan Press Ltd.: New York, NY, USA, 1975. [Google Scholar]
- Evans, J. The Synchrodyne; British Institution of Radio Engineers: 1954. Available online: https://digital-library.theiet.org/content/journals/10.1049/jbire.1954.0021 (accessed on 5 June 2024).
- Momet, E.G. Synchronous Detection; Lucent Technologies: 1934. Available online: https://www.researchgate.net/publication/227919392_The_Lucent_Technologies_Softswitch-Realizing_the_Promise_of_Convergence (accessed on 5 June 2024).
- Northcote, D.; McLaughlin, L.; Crockett, L.; Stewart, R. Capture and Visualisation of Radio Signals with an Open Source, Single Chip Spectrum Analyser. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), Dresden, Germany, 30 August–3 September 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Goldsmith, J.; Ramsay, J.; Northcote, D.; Barlee, K.; Crockett, L.; Stewart, R. Control and Visualisation of a Software Defined Radio System on the Xilinx RFSoC Platform Using the PYNQ Framework. IEEE Access 2020, 8, 129012–129031. [Google Scholar] [CrossRef]
- Reinhardt, V.S. Spur reduction techniques in direct digital synthesizers. In Proceedings of the 1993 IEEE International Frequency Control Symposium, Salt Lake City, UT, USA, 2–4 June 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 230–241. [Google Scholar] [CrossRef]
- Wei, F.; Zhao, X.; Shi, X. A Balanced Filtering Quasi-Yagi Antenna with Low Cross-Polarization Levels and High Common-Mode Suppression. IEEE Access 2019, 7, 100113–100119. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L.; Sapienza, G.; Li, C. Reliable Eye-Blinking Detection with Millimeter-Wave Radar Glasses. IEEE Trans. Microw. Theory Tech. 2024, 72, 771–779. [Google Scholar] [CrossRef]
- Wilkinson, E.J. An N-Way Hybrid Power Divider. In IRE Transactions on Microwave Theory and Techniques; IEEE: Piscataway, NJ, USA, 1960; pp. 116–118. [Google Scholar] [CrossRef]
- Winkler, V. Range Doppler detection for automotive FMCW radars. In Proceedings of the European Radar Conference, Munich, Germany, 10–12 October 2007. [Google Scholar] [CrossRef]
- Cooley, J.; Tukey, J. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Ramsay, C.; Crockett, L.; Stewart, R. Low cost, High speed Parallel FIR Filters for RFSoC Front Ends Enabled by CλaSH. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 925–932. [Google Scholar] [CrossRef]
- LogiCORE. FIR Compiler-PG149 v7.2 LogiCORE IP Product Guide. 2015. Available online: https://www.xilinx.com/support/documents/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf (accessed on 5 June 2024).
- Turker, D.; Bekele, A.; Upadhyaya, P.; Verbruggen, B.; Cao, Y.; Ma, S.; Erdmann, C.; Farley, B.; Frans, Y.; Chang, K. A 7.4-to-14GHz PLL with 54fsrms jitter in 16nm FinFET for integrated RF-data-converter SoCs. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 378–380. [Google Scholar] [CrossRef]
- Swapna, P.; Aprana, M.; Shruti, P. Phase noise Analysis of Charge Pump Phase Locked Loop (PLL) Using Simulink and Design Nonlinearities. In Proceedings of the International Conference On Emanations in Modern Technology and Engineering (ICEMTE 2017), Mira Bhayandar, India, 4–5 March 2017. [Google Scholar]
- Singh, O.; Jagdale, R.S.; Pandey, A.; Ahmed, M.; Vinayakvitthal, L. Implementation of Interpolator and Decimator Using System Generator. In Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Xilinx. Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator. 2018. Available online: https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref (accessed on 5 June 2024).
- Xilinx. RFSoC RF Data Converter; UG897. 2020. Available online: https://www.xilinx.com/products/intellectual-property/rf-data-converter.html (accessed on 5 June 2024).
- Swaminathan, G.; Murugesan, G. FPGA Implementation of Gate Level Modified Adaptive Filter Architecture for Noise Cancellation Application. Int. J. Manuf. Technol. Manag. 2017, 1, 1368–2148. (In English) [Google Scholar] [CrossRef]
- Boyer, W. A Diplex Doppler Phase Comparison Radar. In IRE International Convention Record; Institute of Radio Engineers: New York, NY, USA, 1963. [Google Scholar]
- HiTech. Xilinx RFSoC 2x2Kit. 2022. Available online: http://www.hitechglobal.com/Boards/RFSoC2x2.htm (accessed on 5 June 2024).
- Seybold, J. Introduction to RF Propagation; John Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Schafer, W.; Lutz, E. Propagation Characteristics of Short-Range Radio Links; MOIP: Stuttgart, Germany, 1990. [Google Scholar]
- Fujitsu Components America Inc. FWM7RAZ01. Available online: https://www.fujitsu.com/us/about/resources/news/press-releases/2020/fcai-20201116.html (accessed on 5 June 2024).
- RFbeam. Microwave GmbH. K-LC6. 2024. Available online: https://rfbeam.ch/product/k-lc6-radar-transceiver/ (accessed on 5 June 2024).
- Basir, S.; Pasya, I.; Yaakob, T.; Rashid, N.; Kobayashi, T. Improvement of Doppler measurement using multiple-input multiple-output MIMO concept in radar-based automotive sensor detecting pedestrians. Sens. Rev. 2018, 38, 239–247. [Google Scholar] [CrossRef]
- Thatcham. UK: Volvo again Wins Thatcham Vehicle Security Award. 2012. Available online: https://www.media.volvocars.com/uk/en-gb/media/pressreleases/46334 (accessed on 5 June 2024).
- MATLAB. Pulse-Doppler Radar Using Xilinx RFSoC Device; The MathWorks Inc.: Natick, MA, USA, 2022. [Google Scholar]
Description | Values |
---|---|
Sample rate (GHz) | 4.096 |
Interpolation mode | 2× |
Samples per AX14 stream | 8 |
Mixer | Fine |
NCO frequency (GHz) | 0.501 |
NCO phase (Rads) | 0 |
RFSoC | Resources |
---|---|
DSP Slices | 23 of 4272 |
LUT (K) | 445 of 42,580 |
BRAM (18 Kb) | 112 of 1080 |
Power consumption (W) | 8.7 |
RFSoC | Doppler Sensor [1] | |
---|---|---|
Detection distance | 1–18 M | 2–16 M |
Max sensitivity | 10 dB | 10 dB |
Emission frequency | ||
Time to detection | ∼1 ms | ∼1 ms |
Output power | 12 dBm | 13 dBm |
Harmonic emission | 2 dBm | 10 dBm |
Precision frequency setting | 1 Hz | 3 MHz |
Average current | 2 A | 2 mA |
Description | Proposed | Analogue |
---|---|---|
Instant trigger from movement | Yes | Yes |
Antenna | PCB/External | PCB |
IF amplification required | No | Yes |
FFT of frequencies | Yes | No |
Software upgradable | Yes | No |
Current consumption | High | Low |
Baseband glitching = false alarm | No | Yes |
Frequency drift with temperature | No | Yes |
Production repeatability | Yes | No |
Single IC | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobden, P.; Nurellari, E.; Srivastava, S. RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor. J. Sens. Actuator Netw. 2024, 13, 58. https://doi.org/10.3390/jsan13050058
Hobden P, Nurellari E, Srivastava S. RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor. Journal of Sensor and Actuator Networks. 2024; 13(5):58. https://doi.org/10.3390/jsan13050058
Chicago/Turabian StyleHobden, Peter, Edmond Nurellari, and Saket Srivastava. 2024. "RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor" Journal of Sensor and Actuator Networks 13, no. 5: 58. https://doi.org/10.3390/jsan13050058
APA StyleHobden, P., Nurellari, E., & Srivastava, S. (2024). RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor. Journal of Sensor and Actuator Networks, 13(5), 58. https://doi.org/10.3390/jsan13050058