VNF-Enabled 5G Network Orchestration Framework for Slice Creation, Isolation and Management
Abstract
:1. Introduction
- To model a network orchestration framework that combines network slice generation, isolation, and management to provide efficient and simple network slicing.
- To identify the best machine learning approach for slice creation where the performance dataset is prepared based on the realistic characteristics of the use cases.
- To achieve the best possible distribution of physical infrastructure (PI) resources among Network Service Requests (NSRs), it is necessary to develop a mechanism for isolating network slices. The combination of Multi Criteria Decision Making (MCDM) and Shortest Path Algorithms are utilised for the implementation.
- By the development of the inner slicing idea, which makes use of the resource transfer approach for resource allocation, PI slice performance can be improved with the use of a prepared slice management strategy.
2. Related Literature
2.1. Machine Learning Techniques for Network Slice Creation
2.2. Techniques for Network Slice Isolation and Management
2.3. Motivation
3. Network Model and Mathematical Foundations
3.1. Physical Infrastructure (PI) Model
3.2. Network Service Request (NSR) Model
3.3. Problem Description
3.4. Network Node Attributes
3.4.1. Node Capacity Element (NCE)
3.4.2. Node Topology Element (NTE) and Node Bandwidth Element (NBE)
3.4.3. Node Closeness Centrality Element (NCCE)
4. Proposed Strategy
4.1. Slice Creation by Machine Learning Approaches
Algorithm 1 Slice classification in 5G |
Input:
Output:
|
4.1.1. K-Nearest Neighbour (KNN)
4.1.2. Support Vector Machine (SVM)
4.1.3. Naive Bayes
4.1.4. Random Forest (RF)
4.2. Slice Isolation by Resource Allocation (SIRA) Scheme
4.2.1. NC-SIRA-based Decision Making
4.2.2. LC-SIRA-Based Decision Making
4.2.3. Resource Allocation and Performance Assessment
4.3. Slice Management through Resource Transfer (SMART)
4.3.1. VNF for Dynamic Provisioning
4.3.2. VNF for Inner Slicing
4.3.3. VNF for Reporting
4.3.4. VNF for Priority Provisioning
5. Simulation Results and Discussion
5.1. Simulation Parameters
5.2. Slice Creation through Machine Learning Techniques
5.3. SIRA Scheme
5.4. SMART Scheme
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- 5G PPP Architecture Working Group. View on 5G Architecture: Version 2.0; 5G PPP Association: Brussels, Belgium, 2017. [Google Scholar]
- Alliance, N. Description of network slicing concept. NGMN 5G P 2016, 1, 1–11. [Google Scholar]
- Zhang, H.; Liu, N.; Chu, X.; Long, K.; Aghvami, A.H.; Leung, V.C. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Commun. Mag. 2017, 55, 138–145. [Google Scholar] [CrossRef]
- Santos, J.F.; van de Belt, J.; Liu, W.; Kotzsch, V.; Fettweis, G.; Seskar, I.; Pollin, S.; Moerman, I.; DaSilva, L.A.; Marquez-Barja, J. Orchestration Next-Generation Services through End-to-End Networks Slicing. 2018. Available online: https://orca-project.eu/wp-content/uploads/sites/4/2018/10/orchestrating_e2e_network_slices_Final.pdf (accessed on 23 July 2023).
- Nojima, D.; Katsumata, Y.; Shimojo, T.; Morihiro, Y.; Asai, T.; Yamada, A.; Iwashina, S. Resource isolation in RAN part while utilizing ordinary scheduling algorithm for network slicing. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Bari, F.; Chowdhury, S.R.; Ahmed, R.; Boutaba, R.; Duarte, O.C.M.B. Orchestrating virtualized network functions. IEEE Trans. Netw. Serv. Manag. 2016, 13, 725–739. [Google Scholar] [CrossRef]
- Riggio, R.; Bradai, A.; Harutyunyan, D.; Rasheed, T.; Ahmed, T. Scheduling wireless virtual networks functions. IEEE Trans. Netw. Serv. Manag. 2016, 13, 240–252. [Google Scholar] [CrossRef]
- Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Commun. Mag. 2017, 55, 80–87. [Google Scholar] [CrossRef]
- Subedi, P.; Alsadoon, A.; Prasad, P.; Rehman, S.; Giweli, N.; Imran, M.; Arif, S. Network slicing: A next generation 5G perspective. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 102. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.C.; Hanzo, L. Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 2016, 24, 98–105. [Google Scholar] [CrossRef]
- Pavan, M.; Reddy, B.R. Machine Learning based Prediction for Channel Stability in a 5G Network. In Proceedings of the 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon), Vijaypur, India, 20–21 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Islam Arif, M.A.; Kabir, S.; Hussain Khan, M.F.; Kumar Dey, S.; Rahman, M.M. Machine Learning and Deep Learning Based Network Slicing Models for 5G Network. In Proceedings of the 2022 25th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 17–19 December 2022; pp. 96–101. [Google Scholar] [CrossRef]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Bega, D.; Gramaglia, M.; Banchs, A.; Sciancalepore, V.; Costa-Pérez, X. A machine learning approach to 5G infrastructure market optimization. IEEE Trans. Mob. Comput. 2019, 19, 498–512. [Google Scholar] [CrossRef]
- Abidi, M.H.; Alkhalefah, H.; Moiduddin, K.; Alazab, M.; Mohammed, M.K.; Ameen, W.; Gadekallu, T.R. Optimal 5G network slicing using machine learning and deep learning concepts. Comput. Stand. Interfaces 2021, 76, 103518. [Google Scholar] [CrossRef]
- Chergui, H.; Verikoukis, C. Offline SLA-constrained deep learning for 5G networks reliable and dynamic end-to-end slicing. IEEE J. Sel. Areas Commun. 2019, 38, 350–360. [Google Scholar] [CrossRef]
- Xiang, H.; Peng, M.; Sun, Y.; Yan, S. Mode Selection and Resource Allocation in Sliced Fog Radio Access Networks: A Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 4271–4284. [Google Scholar] [CrossRef]
- Brik, B.; Boutiba, K.; Ksentini, A. Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and Challenges. IEEE Open J. Commun. Soc. 2022, 3, 228–250. [Google Scholar] [CrossRef]
- Lee, Y.L.; Loo, J.; Chuah, T.C.; Wang, L.C. Dynamic Network Slicing for Multitenant Heterogeneous Cloud Radio Access Networks. IEEE Trans. Wirel. Commun. 2018, 17, 2146–2161. [Google Scholar] [CrossRef]
- Srinivasan, T.; Wang, X.; Kim, H.J.; Ra, I.H. Performance enhancement for microgrids under the demand uncertainties with the presence of multiple DGs through stochastic ranking algorithm. J. Electr. Eng. Technol. 2021, 16, 223–238. [Google Scholar] [CrossRef]
- Prasad, J.; Senthil, M.; Yadav, A.; Gupta, P.; Anusha, K.S. A Comparative Study of Machine Learning Algorithms for Gas Leak Detection; Springer: Singapore, 2020; pp. 81–90. [Google Scholar] [CrossRef]
- Delgado, C.; Canales, M.; Ortín, J.; Gállego, J.R.; Redondi, A.; Bousnina, S.; Cesana, M. Joint Application Admission Control and Network Slicing in Virtual Sensor Networks. IEEE Internet Things J. 2018, 5, 28–43. [Google Scholar] [CrossRef]
- Ye, Q.; Li, J.; Qu, K.; Zhuang, W.; Shen, X.S.; Li, X. End-to-End Quality of Service in 5G Networks: Examining the Effectiveness of a Network Slicing Framework. IEEE Veh. Technol. Mag. 2018, 13, 65–74. [Google Scholar] [CrossRef]
- Guan, W.; Wen, X.; Wang, L.; Lu, Z.; Shen, Y. A Service-Oriented Deployment Policy of End-to-End Network Slicing Based on Complex Network Theory. IEEE Access 2018, 6, 19691–19701. [Google Scholar] [CrossRef]
- Cao, H.; Yang, L.; Zhu, H. Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual network embedding. IEEE Internet Things J. 2017, 5, 108–120. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, M.; Mao, S.; Yan, S. Hierarchical radio resource allocation for network slicing in fog radio access networks. IEEE Trans. Veh. Technol. 2019, 68, 3866–3881. [Google Scholar] [CrossRef]
- Li, X.; Guo, C.; Gupta, L.; Jain, R. Efficient and secure 5G core network slice provisioning based on VIKOR approach. IEEE Access 2019, 7, 150517–150529. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Wu, K. Learning-based dynamic resource provisioning for network slicing with ensured end-to-end performance bound. IEEE Trans. Netw. Sci. Eng. 2018, 7, 28–41. [Google Scholar] [CrossRef]
- Chien, H.T.; Lin, Y.D.; Lai, C.L.; Wang, C.T. End-to-end slicing with optimised communication and computing resource allocation in multi-tenant 5G systems. IEEE Trans. Veh. Technol. 2019, 69, 2079–2091. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, S.; Feng, G.; Zhang, L.; Imran, M.A. Service provisioning framework for RAN slicing: User admissibility, slice association and bandwidth allocation. IEEE Trans. Mob. Comput. 2020, 20, 3409–3422. [Google Scholar] [CrossRef]
- Mekki, M.; Arora, S.; Ksentini, A. A Scalable Monitoring Framework for Network Slicing in 5G and Beyond Mobile Networks. IEEE Trans. Netw. Serv. Manag. 2021, 19, 413–423. [Google Scholar] [CrossRef]
- Troia, S.; Vanegas, A.F.R.; Zorello, L.M.M.; Maier, G. Admission Control and Virtual Network Embedding in 5G Networks: A Deep Reinforcement-Learning Approach. IEEE Access 2022, 10, 15860–15875. [Google Scholar] [CrossRef]
- Gao, L.; Li, P.; Pan, Z.; Liu, N.; You, X. Virtualization framework and VCG based resource block allocation scheme for LTE virtualization. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), IEEE, Nanjing, China, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Gupta, R.K.; Misra, R. Machine learning-based slice allocation algorithms in 5G networks. In Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Archanaa, R.; Athulya, V.; Rajasundari, T.; Kiran, M.V.K. A comparative performance analysis on network traffic classification using supervised learning algorithms. In Proceedings of the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Balachandran, A.; Amritha, P.P. VPN Network Traffic Classification Using Entropy Estimation and Time-Related Features. In IOT with Smart Systems; Senjyu, T., Mahalle, P., Perumal, T., Joshi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 509–520. [Google Scholar]
- Nair, M.R.; Ramya, G.; Sivakumar, P.B. Usage and analysis of Twitter during 2015 Chennai flood towards disaster management. Procedia Comput. Sci. 2017, 115, 350–358. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B.; Figueira, J.; Greco, S. Multiple Criteria Decision Analysis: State of the Art Surveys; Springer Science+ Business Media, Inc.: New York, NY, USA, 2005; pp. 163–196. [Google Scholar]
- Greco, S.; Figueira, J.; Ehrgott, M. Multiple Criteria Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2016; Volume 37. [Google Scholar]
- Venkatapathy, S.; Srinivasan, T.; Jo, H.G.; Ra, I.H. Optimal Resource Allocation for 5G Network Slice Requests Based on Combined PROMETHEE-II and SLE Strategy. Sensors 2023, 23, 1556. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Yu, C.; Hou, W.; Guan, Y.; Zong, Y.; Guo, P. Virtual 5G network embedding in a heterogeneous and multi-domain network infrastructure. China Commun. 2016, 13, 29–43. [Google Scholar] [CrossRef]
- Mijumbi, R.; Serrat, J.; Gorricho, J.L.; Bouten, N.; De Turck, F.; Davy, S. Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9. [Google Scholar]
Ref. No. | Methodology Adopted | Components | Performance Metrics | Considered Attributes |
---|---|---|---|---|
[14] | Reinforcement Learning | Slice creation | Learning Time and Revenue | Number of Resources in base station, base station capacity, Bandwidth, distribution |
[15] | Machine Learning and Deep Learning | Slice creation | Accuracy | Device type, packet loss rate, speed, duration, bandwidth, jitter, delay rate |
[16] | Deep Learning | Slice creation and isolation | Resource Efficiency and Violation Rate | Traffic, PRB usage and CPU load |
[17] | Reinforcement Learning | Slice isolation | Power consumption | Number of sensors, traffic and monitoring devices |
[32] | Deep Reinforcement Learning | Slice isolation | CPU and bandwidth utilization | CPU capacity, bandwidth, path length and number of requests |
[19] | Dynamic Programming | Slice isolation | Bandwidth and fairness | Data rate, transmission power, link capacity and bandwidth |
[22] | Dynamic Greedy Technique | Slice isolation | Residual energy consumption | Transmission power, distance, path loss and bandwidth |
[24] | Complex Network Theory | Slice isolation | Resource Efficiency and Acceptance Ratio | CPU and bandwidth |
[25] | VNE-NTANRC algorithm | Slice isolation | Resource Efficiency and Acceptance Ratio | CPU and bandwidth |
[26] | Stackelberg game approach | Slice isolation | Power consumption and delay | Subchannels, devices, data rate and traffic |
[27] | VIKOR approach | Slice isolation | Resource Efficiency and Acceptance ratio | CPU and bandwidth |
[28] | Stochastic Network Principles | Slice isolation | Resource Efficiency | Delay rate, traffic rate, capacity and service type |
[29] | UFLOP mechanism | Slice creation and isolation | Provisioning ratio and traffic allocation ratio | CPU, bandwidth and delay time |
[30] | SABA scheme | Slice isolation and management | Bandwidth consumption | Delay rate, bandwidth, link capacity and service type |
[31] | FlexRAN controller | Slice isolation and management | RAM and CPU consumption | CPU, Memory and bandwidth utilization |
Proposed | Machine Learning for Slice Creation, PROMETHEE for Slice Isolation and Resource Transfer for Slice Management | Slice creation, isolation and management | Slice creation: Precision, Recall, and F1 Score Slice isolation and management: Resource Efficiency, Acceptance Rate | CPU capacity, link capacity, bandwidth, jitter, delay rate, and closeness centrality |
. | . | . | . | . |
. | . | . | . | . |
Physical Infrastructure Network | ||
---|---|---|
Definitions | Descriptions | Range |
Total number of PI nodes | 100, 200, 300 | |
CPU capacity of each PI node | U(20,50) | |
Link capacity of each PI node | U(20,50) | |
Security level of a PI node | (0–1) | |
Bandwidth of each PI links | U(20,50) | |
The rate of delay for each PI node | (0–1) | |
The jitter for each PI node | (0–1) | |
Network Service Request | ||
Definitions | Descriptions | Range |
The total number of NSRs | U(5,35) | |
Nodes count in each NSR | 20 | |
CPU requirement of NSR node | U(5,25) | |
LC requirement of NSR node | U(5,25) | |
Bandwidth requirement of NSR node | U(5,25) | |
Security level of a NSR node | (0–0.5) | |
Life time of each NSR | T(10,35) |
ML Approach | 90% of Training Set and 10% of Testing Set | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
eMBB | mMTC | uRLLC |
Overall (%) | |||||||
Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score | ||
KNN | 0.93 | 0.95 | 0.97 | 0.97 | 0.92 | 0.94 | 0.94 | 0.97 | 0.96 | 95 |
Naive Bayes | 0.96 | 0.95 | 0.95 | 1.00 | 0.98 | 0.99 | 0.92 | 0.96 | 0.94 | 96.3 |
SVM | 0.96 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 0.96 | 0.95 | 97 |
Random Forest | 0.94 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 | 0.97 | 98.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, T.; Venkatapathy, S.; Jo, H.-G.; Ra, I.-H. VNF-Enabled 5G Network Orchestration Framework for Slice Creation, Isolation and Management. J. Sens. Actuator Netw. 2023, 12, 65. https://doi.org/10.3390/jsan12050065
Srinivasan T, Venkatapathy S, Jo H-G, Ra I-H. VNF-Enabled 5G Network Orchestration Framework for Slice Creation, Isolation and Management. Journal of Sensor and Actuator Networks. 2023; 12(5):65. https://doi.org/10.3390/jsan12050065
Chicago/Turabian StyleSrinivasan, Thiruvenkadam, Sujitha Venkatapathy, Han-Gue Jo, and In-Ho Ra. 2023. "VNF-Enabled 5G Network Orchestration Framework for Slice Creation, Isolation and Management" Journal of Sensor and Actuator Networks 12, no. 5: 65. https://doi.org/10.3390/jsan12050065
APA StyleSrinivasan, T., Venkatapathy, S., Jo, H. -G., & Ra, I. -H. (2023). VNF-Enabled 5G Network Orchestration Framework for Slice Creation, Isolation and Management. Journal of Sensor and Actuator Networks, 12(5), 65. https://doi.org/10.3390/jsan12050065